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Abstract

In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model
is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage.
The constitutive equations for the damaged material are written according to the principle of strain energy equivalence
between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of
the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model con-
siders different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-
kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An
additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is
further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to
the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation
and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension
tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement be-
tween the experimental results and the model is obtained.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The non-linear material behavior may be attributed to two distinct material mechanical processes:
plasticity (i.e. dislocations along crystal slip planes) and damage mechanics (microcracks, microcavities
nucleation and coalescence, decohesions, grain boundary cracks, and cleavage in regions of high stress
concentration). The two degradation phenomena are described best by the theories of plasticity and con-
tinuum damage mechanics. Thus, a multi-dissipative model that accounts for both the material decohesions
and the dislocations along slip planes is necessary. This is accomplished by adopting two loading surfaces
and two potential functions, one for plasticity and the other for damage.
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Ductile materials usually fail as the result of nucleation, growth, and coalescence of microdamages.
Experimental observations show that the accumulation of microdamages has a tendency to form macro-
scopically localized damage, which is a precursor to failure. This progressive physical process of degra-
dation of the material mechanical properties up to complete failure is commonly referred to as damage.
Various damage morphologies have been described in the literature, such as creep damage, low cycle fa-
tigue, high cycle fatigue, and brittle damage (Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre,
1992; Voyiadjis and Kattan, 1999). The present paper is concerned with anisotropic ductile damage.

Metallographic studies for polycrystalline metals (Thomason, 1990; Anderson, 1994; Hertzberg, 1996)
demonstrate that the ductile damage is basically characterized by three mechanisms of microdamages
growth: (i) nucleation of microscopic voids that initiate at inclusions and second phase particles, failure of
particles or microcracking of the matrix surrounding the inclusion, (ii) growth of the microvoids by means
of plastic strain and hydrostatic stress, and (iii) coalescence or microcracks linking the growing microvoids
with adjacent ones, thus leading to vanishing load carrying capacity of the material, as the damage density
approaches unity.

Many models for estimating the microdamage accumulation in ductile materials have been published,
some of which are based on damage micromechanics (micromechanical damage models) while others based
on the continuum damage theory (phenomenological damage models). The former models are required for
particles of less than 1 pm in diameter. A model of this type was formulated by Gurson (1977), where he
obtained, based on an approximation analysis of spherical voids, a yield function for porous ductile ma-
terials with perfectly plastic matrix. Modification of the Gurson’s model have been proposed by several
authors (e.g. Tvergaard, 1982; Tvergaard and Needleman, 1984). Tvergaard (1982) modified Gurson’s
model to improve the predictions at low void volume fractions. Tvergaard and Needleman (1984) modified
Gurson’s yield function in order to account for rate sensitivity and necking instabilities in plastically de-
forming solids and to provide better representation of final void coalescence. The aspects of Gurson’s
model was outlined in the review article by Nemat-Nasser (1992) and discussed by Voyiadjis and Kattan
(1992a,b), Li (2000), and Mahnken (2002). In this way micromechanical models are based on physical
soundness, and various applications have modeled microdamage growth and ductile failure (Haj-Ali et al.,
2001).

Phenomenological models are based on the concept of Kachanov (1958), who was the first to introduce
for the isotropic case a one-dimensional variable, which may be interpreted as the effective surface density
of microdamages per unit volume (Voyiadjis and Venson, 1995; Venson and Voyiadjis, 2001). Kachanov
(1958) pioneered the subject of continuum damage mechanics by introducing the concept of effective stress.
This concept is based on considering a fictitious undamaged configuration of a body and comparing it with
the actual damaged configuration. He originally formulated his theory using simple uniaxial tension.
Following Kachanov’s work researchers in different fields applied continuum damage mechanics to their
areas in fields like brittle materials (Krajcinovic and Foneska, 1981; Krajcinovic, 1983, 1996) and ductile
materials (Lemaitre, 1984, 1985; Kachanov, 1986; Murakami, 1988). In the 1990s applications of contin-
uum damage mechanics to plasticity have appeared (e.g. Lubarda and Krajcinovic, 1995; Voyiadjis and
Kattan, 1992a,b, 1999; Voyiadjis and Park, 1997, 1999; Voyiadjis and Deliktas, 2000; etc.).

Often, ductile materials undergo a strong plastic deformation, which has a major influence on the
damage evolution and reverse. There are many models with weak coupling between plasticity and damage.
The models that adopt two separate uncoupled damage and plastic loading surfaces with two independent
associated flow rules present a week coupling between plasticity and damage. Those models are being
extensively used by many authors (e.g. Chow and Wang, 1987, 1988; Simo and Ju, 1989; Lemaitre and
Chaboche, 1990; Hansen and Schreyer, 1994; Zhu and Cescetto, 1995; Murakami et al., 1998; etc.). While
there are many models with weak coupling, no consistent model realizing a strong coupling has been
published yet. However, relatively strong coupling between plasticity and damage can be achieved by using
one single smooth generalized yield surface and an associated flow rule for the plasticity and damage
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evolutions (e.g. Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984; Rousselier, 1987; Ehlers,
1995; Hesebeck, 2001; Mahnken, 2002). Those models obviously cannot describe all loadings correctly since
a hydrostatic stress will certainly cause damage before any plastic deformation can be noticed. In addition
most of those models are restricted to low damage levels or dilute distribution of defects and therefore they
fail to account for the interaction of the defects adequately. Another approach to achieve this strong
coupling is by using separate plasticity and damage surfaces with separate non-associated flow rules in such
a way that both damage and plasticity flow rules are dependent on both the plastic and damage potentials
(Voyiadjis and Deliktas, 2000). The later approach is adopted in this work, where the strong coupling
between plasticity and damage is implemented by using two damage mechanisms. One mechanism is
coupled with plasticity, while the other one occurs independent of plastic deformation. The dissipation
function of the latter occurs in both the elastic and plastic domains. To formulate that on the basis of the
thermodynamic principles, the two damage processes are represented by two additive portions in the
dissipation potentials. Because this work focuses on the development of coupled plastic-damage governing
equations based on thermomechanical postulates, the various possibilities to describe the plasticity and
anisotropic damage shall be considered here.

It is generally assumed that the rate of deformation can be additively decomposed into an elastic (re-
versible) part and an inelastic (irreversible) part (e.g. Nemat-Nasser, 1983; Lubliner, 1990; Simo and
Hughes, 1998). ‘Non-instantaneously reversible’ deformation is a more general description of the inelastic
deformation since it is corresponding to the following set of physical phenomena: instantaneous plasticity,
viscoplasticity, damage, and viscodamage. The first type of inelastic deformation is a time-independent
mechanism, which is generally considered in the rate-independent plasticity theories. The viscoplastic de-
formation, which is sometimes qualified as creep, is a rate-dependent mechanism. Both of those two
mechanisms or one of them is generally not sufficient to describe the set of experimental observations.
Therefore, degradation of the mechanical properties up to complete failure should be considered in the
experimental simulations. The damage growth can be time-independent (damage theory) and/or time-
dependent process (viscodamage theory). The evolution, nucleation, and coalescence of microcracks, voids,
and cavities during manufacturing processes and subsequent loading enhance the material to behave ine-
lastically in the elastic and plastic domains. Voyiadjis and Park (1999) summed such defects as an inelastic
strain called the damage strain. They decomposed this damage strain into elastic-damage (recoverable)
component attributed to crack closure and void contraction during unloading, and inelastic-damage (un-
recoverable) component attributed to random distribution and orientation of the cracks that make their
recovery impossible. In accordance with their work, two irreversible strains are considered in this study: the
plastic and the damage strains.

An outline for this work is as follows: In Section 2 we demonstrate the motivated morphologies for the
additive decomposition of the total strain into elastic, plastic, and damage components. Section 3 is devoted
to the physical interpretations of the damage variable for both the isotropic and anisotropic damage dis-
tributions. Furthermore the derivation of the energy release rate is outlined for both isotropic and an-
isotropic damage distributions. In Section 4, we outline a general thermodynamic framework for the
coupled elasto-plastic and damage material behavior. In Section 5, the derived evolution equations are
examined for pure isotropic damage case and applied to simulate the experimental results of Hesebeck
(2001) for high strength steel specimens subjected to tensile loading. This work is restricted to small strains.

2. The strain additive decomposition
Experimental observations show that in general the processes of cold-working, forming, machining of

mechanical parts, etc. can cause an initial evolution of defects in the virgin material state, such as nucleation
of certain amount of cracks, voids, and dislocation patterns. The initial defects induced in the material
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microstructure along with the subsequent defects that occur during deformation process enhance the
material to behave inelastically even before the onset of plasticity. If the material is elastically unloaded
before forming dislocations along slip planes (plasticity), permanent strains are observed. Those strains are
irreversible damage strains, while the reversible strains are of two parts: elastic part and damage part. As
plastic deformations initiate, both damage and plastic permanent deformations are anticipated. Next we
demonstrate this behavior in uniaxial tension and complex loadings.

Imagine an elastically loaded representative volume element (RVE) containing uniformly distributed
(micro)cracks of Mode I, which are triggered by the process of cold working, is deformed by a total strain
€. A certain part of this strain is elastically recoverable (&%) and another part is induced by damage (£2¢).
After the loads are released before the yield limit is reached, the body will have no permanent strains left.
However, the magnitude of the elastic stiffness for the RVE maybe reduced due to the growth of micro-
cracks. This is clearly demonstrated in Fig. 1 which shows the foregoing micromechanics of a continuum
point in the RVE and the corresponding macrostresses and strains. We begin with an unstressed unit cell in
the RVE containing a microcrack of length 2a and a resulting average stiffness £, (the stiffness of the matrix
surrounding the microcrack remains unchanged by microcrack opening). Up to a certain stress level, the
microcrack will not grow but only open. Therefore, the microcrack length will remain 2a (neglecting the
Poisson’s effect) and the RVE average stiffness will not change. Beyond this threshold, however, the mi-
crocrack extends by an amount 2(da) and the average stiffness decreases by an amount dE;. Upon the load
release the microcrack will close and no further growth occurs. For the same stress (points b and d) a
greater strain will result, due to the reduction in the RVE average stiffness. In the stress free state there are
no permanent strains left, only the resulted average stiffness (E;) is less than that of the initial body. The
amount of the stored elastic strain energy at the end of the loading process is given by a1.(¢5, + ¢9)/2 and
the additional surface energy resulting from the microcrack extension by an amount of 2da is obtained from
the work done by the applied stress oy [(e5, + &9) — (&, + €5,)].

Imagine now the elastically loaded RVE containing an arbitrary distribution of (micro)voids and (mi-
cro)cracks of mixed modes (Mode I, II, and III), which are triggered by the process of cold working, and
subjected to a 2-D state of stress. Generally, this situation is more likely to happen in materials than the
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Fig. 1. Fictitious uniaxial stress—strain elastic response resulting from a growing microcrack. All the damage strain is recoverable (the
crack is closed but not healed).
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former case. The RVE is deformed by a total strain of ¢; a certain part of it is elastically recoverable (&°) and
another part is induced by the damage (¢!). When the loads are released before yielding is observed, the
body will have, similar to plasticity and in contrast to the previous fictitious situation, permanent defor-
mations (¢'Y). Those irreversible damage strains are attributed to the necessary geometric constraints set by
other (micro)defects. Fig. 2 shows the underlying micromechanics of a continuum point in the RVE and the
corresponding macrostresses and strains in one of the geometric directions. The existing stress state is
assumed of combined biaxial tension and shear (o, > o7 > 71,) with the stress—strain behavior in the two-
direction being accounted for. We start with an unstressed sub-RVE containing a growing microcrack and
microvoid with an average stiffness E (the stiffness of the matrix surrounding the microcrack/microvoid
remains unchanged by microcrack opening). Up to a certain stress level, the microcrack will open and start
growing and the microvoid will expand. This process is accompanied by shape change and reduction in the
average stiffness, dE. Upon the loads release, part of the microcrack will close, the size of the microvoid will
decrease, and no further growth occurs. For the same stress (points b and d) a greater strain will result, due
to the microcrack and microvoid growth and the reduction in the average stiffness. In the stress free state,
permanent strains occur and the resulted average stiffness (E) is less than that of the initial body. Part of the
resulted damage strain, &, is recovered and another part is permanent. As clearly seen, the recoverable part,
£, is attributed to partial closure of microcracks and size reduction of microvoids upon unloading (but not
healing), while the unrecoverable part is attributed to lack of closure of all microcracks and unvanishing
microvoids that cause permanent deformation. As we stated earlier, this may be due to the geometrical
constraints set up by the interacting microcracks, microvoids, and grain boundaries.

Both situations are likely to happen under different types of loading. However, the first situation is more
likely to happen in uniaxial tension, while the second situation is likely to happen in complex loading.

One now investigates the total basic one-dimensional behavior in a ductile material. Consider the uni-
axial tension test shown in Fig. 3. In this test, a bar of uniform cross-section is subjected to the uniaxial
loading—unloading history: O — B — C, during which the length of the bar takes the following values:
L — [ — [Pd_ /pd_ ] Stage O — B corresponds to a monotonic loading beyond the elasticity domain,
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Fig. 2. Fictitious stress—strain elastic response of an RVE subjected to a 2-D state of stress (o7 > 0, > 113) resulting from a growing
microcrack and microvoid. Part of the damage strain is recoverable (not healed) and the other part is unrecoverable.
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Fig. 3. Uniaxial stress—strain response of a metallic specimen.

and B — C to elastic unloading (C — B corresponds to elastic loading process). State C corresponds to a
stress-free, unloaded configuration. We can write the following identity:

[ 1 pipp

L P L .
or

A=29p (2)

where 2 = [/L is the axial stretch ratio at the end of O — B, A° = [//P can be viewed as the elastic stretch at
the end of the elastic transformation B — F, 2* = /Pd/[? corresponds to the damage stretch between D state
and a damage-free state between C and O, and A” = [P /L corresponds to plastic stretch between O state and
a plastic-free state between C and O. The term “between C and O is used due to the fact that part of the
permanent deformation is contributed by plasticity and part from the non-recoverable damage.

Note that the superscripts here do not imply tensorial indices but merely indicate the corresponding
deformation configuration such as “e” for elastic, “p” for plastic, “d”” for damage, “‘ed” for elastic-damage,
“id” for inelastic-damage, and “pid” for plastic-inelastic-damage

Additionally A% can be written as:

lpd lpd lpid

T (3)
or

/ld _ ;Led}vid (4)

where o = ppd /1P is the elastic-damage stretch (recoverable damage stretch) between states D — C, and
A4 — ppid /1P is the unrecoverable damage stretch between C state and a damage-free state between C and O.
No effective configurations are used to interpret the above definitions.

In the context of the kinematic linear theory of deformation (infinitesimal deformation) and motivated
by the above schematic illustration, by the micromechanics of single crystal plasticity (Nemat-Nasser, 1979,
1983), and the continuum damage mechanics (Voyiadjis and Park, 1999), one can assume the additive
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decomposition of the total strain (¢) into elastic (¢°), plastic (¢”), and damage components (¢¢). Although the
damage process is an irreversible deformation thermodynamically; however, the deformation due to
damage itself can be partially or completely recovered upon unloading. Thus, the damage strain component
is also decomposed into elastic (reversible) and inelastic (irreversible) parts. The recoverable part is at-
tributed to cracks closure upon unloading (but not healing), while the unrecoverable part is attributed to
unclosed cracks and voids that cause permanent deformation. This may be due to the constraints set up by
the interacting (micro)cracks, (micro)voids, dislocation densities, and grain boundaries. Both reversible and
irreversible parts cause degradation in the material stiffness. Hence, in small strain theory, the total strain
can be additively decomposed as:

_ . p d
&jj = 81‘]‘ + &j + Si/ (5)
and
d _ ed | id
& =& e (6)

where &¢ and & are the elastic-damage and inelastic-damage parts of the damage strain, respectively. In
this work the subscripted letters after the variables indicate the tensorial nature of the variables unless
specifically stated otherwise.

During the unloading process, two types of strains are purely reversible: the ordinary elastic strain, &°,
and the elastic-damage strain, &¢. Thus, the total reversible elastic strain, &, due to unloading can be
obtained by:

E d
£+ & (7)

& =
ij
On the other hand, the total inelastic strain, &', arises from the two irreversible sources: inelastic damage
and plastic flow such that:

i= ey T (8)

Sij =

Eq. (5) can therefore be expressed as follows:
& = 95 + FII/ 9)

Both components of the damage tensor & and & are functions of an internal variable called the damage
variable, ¢, which is a scalar for isotropic damage and a tensor for a continuum that exhibits anisotropic
damage. In the following section, we interpret the physical definition of the damage tensor in one-di-
mension and three-dimensions.

3. Physical interpretation of the damage variable

The damage variable is a macroscopic measure of the microscopic degradation of a RVE (Kachanov,
1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Lubarda and Krajcinovic, 1993; Voyiadjis and
Venson, 1995; Krajcinovic, 1996; Voyiadjis and Kattan, 1999; Voyiadjis and Deliktas, 2000). Damage in
materials can be represented in many forms such as specific void and crack surfaces, specific crack and void
volumes, the spacing between cracks or voids, scalar representation of damage, and general tensorial
representation of damage. In this section, however, the physical interpretation of the damage variable is
introduced as the specific damaged surface area, where two cases are considered: the isotropic damage
distribution case and the anisotropic damage distribution case of microcracks and microvoids. Moreover,
this study is limited to small strain deformations and an extension to finite strain deformations can be easily
done.
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3.1. Isotropic damage

We first consider the definition of the damage variable ¢ in one-dimension as originally proposed by
Kachanov (1958), and further developed by several other authors (e.g. Lemaitre and Chaboche, 1990;
Lemaitre, 1992; Lubarda and Krajcinovic, 1993; Voyiadjis and Venson, 1995; Krajcinovic, 1996; Voyiadjis
and Kattan, 1999; Kattan and Voyiadjis, 2001) since the 1970s. Consider a uniform bar subjected to a
uniaxial tensile load, 7, as shown in Fig. 4(a). The cross-sectional area of the bar in the stressed config-
uration is 4 and it is assumed that both voids and cracks appear as damage in the bar and form a total
damage area of AP. The uniaxial tensile force T acting on the bar is easily expressed using the formula
T = gA. In order to use the principles of continuum damage mechanics, one considers a fictitious un-
damaged configuration (effective configuration) of the bar as shown in Fig. 4(b). In this configuration all
types of damage, including both voids and cracks, are removed from the bar. The effective stressed cross-
sectional area of the bar in this configuration is denoted by 4 and the effective uniaxial stress is . The bars
in both the damaged configuration and the effective undamaged configuration are subjected to the same
tensile force, 7. Therefore, considering the effective undamaged configuration, one can write 7 = GA.
Equating the two expressions for 7' that are obtained from both configurations, the following expression for
the effective uniaxial stress ¢ (Kachanov, 1958; Rabotnov, 1968) is derived such that:

_ o
6_1—¢ (10)
where
A—A4 AP
O =

where 4P is the specific flaws (or damaged) area (Voyiadjis and Kattan, 1999; Kattan and Voyiadjis, 2001).
Similarly, a relation between the effective stress tensor, @, and the nominal stress tensor, &, for the case of
isotropic damage (i.e. scalar damage variable) can be written as follows:
Oij
1-¢
One can now derive expressions for the elastic strains and elastic moduli in the damage configuration as a
function of the isotropic damage variable ¢. Assume that the initiated microcracks (no microvoids are

(12)
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Fig. 4. A cylindrical bar subjected to uniaxial tension: both voids and cracks are removed simultaneously (Voyiadjis and Kattan, 1999;
Kattan and Voyiadjis, 2001).
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initiated) during elastic loading are totally closed (not healed) upon elastic unloading process. Fig. 5(a)
shows a fictitious stress—strain response before plasticity occurs, where the total elastic strain (e¥ = & + &)
is recoverable. Thus, the elastic stress—strain relation can be written as:

0ij = Eyuey, (13)

where E is the initial elastic moduli that is constant and can be obtained experimentally.

The above equation shows that the initial elastic modulus, E, is equal to the effective elastic modulus, E,
if no damage occurs (i.e. E = E for no damage case). This is true if initially the current state has no mi-
crodamage initiation. Thus, in this case the spatial configuration coincides with the effective fictitious
configuration. Alternatively, Eq. (13) can also be written as follows (Fig. 5(a)):

01 = Eijua (&, + &) = Equegy (14)

where E is the elastic-damage Young’s moduli (degraded) that is no longer constant, and hence a relation
between the elastic-damage moduli £ and the damage variable ¢ is sought.

Considering the fictitious effective (undamaged) stress—strain response shown in Fig. 5(b), a similar re-
lation to Eq. (13) can be obtained such as:

Gy = Ejuty (15)

where & and E are the effective counterparts of ¢ and E, respectively.

In order to derive the transformation relations between the damaged and the hypothetical undamaged
(effective configuration) states of the material, the elastic energy equivalence hypothesis (Sidoroff, 1981) is
utilized. This hypothesis assumes that the elastic energy in terms of effective and nominal stress and cor-
responding strain quantities must be equal. Thus, the elastic strain energy is equated to the effective elastic
strain energy such that:
where &f = & + ¢ is the total elastic strain recovered during unloading and & is the effective elastic strain.
The total elastic strain energy is assumed to be a decomposition of two parts: the ordinary elastic strain

O A 5 A
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(b)

Fig. 5. Fictitious uniaxial stress—strain elastic response where all the damage strain is recoverable. (a) All damage is recoverable (all
cracks are closed but not healed), (b) effective configuration where all damage is removed.
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energy (1/26¢°%) and the elastic-damage strain energy (1/2a¢® — 1/26¢°). This signifies that the stored elastic-
damage energy is needed to open the closed cracks during the elastic loading.

Substituting Eq. (12) into Eq. (16), the following relation between the effective elastic strain, &, and the
total elastic strain, &%, is obtained as follows:

5= (1 ¢)et (17)

This is analogous to the relation derived by Voyiadjis and Kattan (1992a). However, in that work the strain
¢ was not explicitly decomposed into its components & and &*.

A similar relation between the ordinary elastic strain, &°, and the effective elastic strain, &, can be ob-
tained by substituting Egs. (12) and (13) into Eq. (15) such that:

&g =(1-¢)E; (18)

From the above relation it is clear that the effective elastic strain, °, is not identical to the ordinary elastic
strain, &°, obtained through the additive strain decomposition in Eq. (7). This relation shows that the elastic
strain (excluding the damage strain) depends on the damage level, which conforms well to the experimental
observations that show the elastic strain decreases as the damage level increases, in particular, at strains
close to failure, see Fig. 6.

Furthermore, by rearranging Eq. (17) and substituting into Eq. (18) one obtains:

&= (1— )% (19)

which again emphasizes the previous result, see Fig. 6. Considering the additive decomposition of the total
elastic strain, Eq. (7), into Eq. (19) and simplifying the result we obtain a relation for the elastic-damage
strain, &, as follows:

go— |10 9F (20)

vl a=er |
or by utilizing Eqs. (18) and (19) one obtains the following relation:

e —1_(1_¢)2_—e

el r ey K Al U U 2N @D
This relation shows that the elastic-damage strain, £, increases with the damage growth (Fig. 6), which
qualitatively agrees with the loading—unloading uniaxial tensile processes.
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Fig. 6. Variation of the different types of elastic strain with respect to the damage variable, ¢. (a) With respect to the total elastic strain,
(b) the elastic-damage strain to elastic strain ratio.
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Finally, by substituting Eqs. (10) and (17) into Eq. (15) and comparing the result with Eq. (14), one
derives a relation between the elastic-damage modulus, E, and the initial elastic modulus, E, in terms of the
scalar damage variable, ¢, as follows:

Ezj kI = Fijkl(l - (f))z (22)

This coincides with the relation obtained by Voyiadjis and Kattan (1992a).

In Fig. 6(a) the variation of the strain ratios in the elastic range of Egs. (17), (19) and (21) are plotted with
respect to the damage variable, ¢. In Fig. 6(b) the variation of the strain ratio in the elastic range of Eq. (20)
is plotted with respect to the damage variable, ¢. Fig. 6 shows a qualitatively correct behavior with respect
to the experimental observations.

It is noteworthy that if the damage variable, ¢, is known, one can then calculate the corresponding
damage strain and stiffness using the derived equations. Next, we will demonstrate the proposed damage
concept for the anisotropic case.

3.2. Anisotropic damage

Many researchers tend to adopt the traditional simple isotropic scalar damage variable, “(1 — ¢)”, in
order to model the material microdamage mechanism, in which all components of the material stiffness are
degraded by the same scalar damage parameter, ¢ (e.g. Krajcinovic and Foneska, 1981; Krajcinovic, 1983;
Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Doghri, 2000; etc.). However, in order to
insure a more realistic application of the principles of the damage mechanics, anisotropic damage should be
assumed. In this case different levels of damage are related to the principal directions, and thus a simple
scalar damage parameter is no longer sufficient to quantify damage in all directions. Instead, the aniso-
tropic phenomenon of the microdamage distribution in the material is interpreted using a symmetric sec-
ond-order damage tensor, ¢;; (e.g. Murakami and Ohno, 1981; Murakami, 1983, 1988; Ortiz, 1985; Chow
and Wang, 1987, 1988; Lubarda and Krajcinovic, 1993; Voyiadjis and Abu-Lebdeh, 1993; Voyiadjis and
Kattan, 1992a,b; Voyiadjis and Venson, 1995; Voyiadjis and Park, 1997, 1999; Seweryn and Mroz, 1998;
Voyiadjis and Deliktas, 2000; etc.).

We now generalize the definition of the isotropic damage variable described above (Fig. 4) for the an-
isotropic case. Consider a damaged solid in which an RVE of finite volume has been isolated. Assume the
RVE is an elementary parallelopiped, and consider facets of outward unit normal »n; (i = x,y,z). Each of
the three facets has a different evolution of microdamage; i.e. 4P on the facet that has a unit normal n,, A;?
on the facet that has a unit normal n,, and 4P on the facet that has a unit normal n.. The total area of the
facet in the n,, n,, and n, directions are designated as 4,, 4,, 4., respectively. A measure of damage in the
RVE is then given by a second-order tensor defined as follows:

d=Vp®p or ¢;=./pip; (23)
where p is the microdamage (microcracks and microvoids) density, and defined as follows:
AP
;= A—’ (no sum on i) (24)

where AP (i = x,y,z) is the total area of the defects traces on the facet whose unit normal is n;. We will see
in the subsequent sections that the definition of the strain energy release rate enables us to avoid calculation
of AP which would be extremely difficult to do because of the lack of knowledge of the precise geometry of
the microcracks and microvoids. A compound definition for damage was previously defined by Kattan and
Voyiadjis (2001) were both damages due to cracks and voids were superimposed. Their definition of voids
followed the concept of area reduction due to damage.
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The damage tensor ¢ in Eq. (23) can be written in a matrix form as follows:

d)xx ¢Xy (ZSXZ px \/ :Dxpy \/ poZ
[¢] = ¢,wc (z)yy ¢yz = \/m Py \/m (25)
G O O VP:Px /PP, P

which is a generalization of the Kachanov’s parameter that has in some simple special cases the same
meaning. In the work of Voyiadjis and Venson (1995) crack densities as a measure of microcracks only
without microvoids was considered. In a later work by Voyiadjis and Kattan (1999), and Kattan and
Voyiadjis (2001) the two types of damages were incorporated under the same variable, ¢. In the present
work all the defect traces that evolve on the RVE facets (i.e. microcracks and microvoids) are considered.

It is worth to say that the above definition is defined from a pure geometric point of view; that is the
larger the surface damage traces, the more severe the damage. From the material point of view, the dis-
tribution (spacing and orientation) and size of the surface damage traces have a considerable influence on
the material behavior. For example the same total damaged area can be contributed by a smaller number of
large voids/cracks or a larger number of small voids/cracks. Those effects are implicitly considered in the
evolution equations derived in the subsequent sections. This implicit consideration comes from the fact that
the proposed model follows the phenomenological approach because the material behavior is described
through a suitable set of internal variables, acting at the microstructural level, and whose relation to mi-
cromechanical processes is not exactly defined. However, an explicit consideration of such effects can be
achieved by the use of the non-local or gradient damage theories (e.g. Pijaudier-Cabot and Bazant, 1987;
Aifantis, 1992; Zbib and Aifantis, 1992; Voyiadjis et al., 2001; Taylor et al., 2002). This explicit consid-
eration of the shape, size, and distribution of microcracks and microvoids by the use of the non-local or
gradient theories can be easily adapted to the proposed model, but the matter is beyond the scopes and the
limits of the present paper.

One can write the linear elastic constitutive equations for the damaged material according to the principle
of strain energy equivalence between the virgin material and damaged material (Sidoroff, 1981). That is, the
damaged material is modeled using the constitutive laws of the effective undamaged material in which the
Cauchy stress tensor, 6, is replaced by the effective stress tensor, ¢ (Murakami and Ohno, 1981):

Gy = Mo (26)

where M is the fourth-order damage-effect tensor. Many different expressions for M have been proposed in
the literature in order to symmetrize the effective stress tensor, @. A comprehensive review of the most
widely used expressions are presented by Voyiadjis and Park (1997). The following expression for M, which
is proposed by Cordebois and Sidoroff (1979), is used here due to its attractiveness in the mathematical
formulations, such that:

M = 2[(85 — )31 + 0 (3 — ;)] (27)

where J;; is the Kronecker delta.
Furthermore, using the strain energy equivalence principle, Eq. (17) which relates the effective elastic
strain tensor g° with the total elastic strain tensor &£ can be expressed for anisotropic damage as follows:

E?j = A/[z;]llgl]czl (28)
Also similar to Eq. (18), one can write:
& = Mgy, (29)

Analogous to Eq. (22), the elastic-damage stiffness, E, can be rewritten using the fourth order damage-effect
tensor M as follows (Voyiadjis and Park, 1999):
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Eiju = Mlm/nEm”Pquk;l (30)
where

Moy = 30w — u)dp + 0 (31 — 1)) (31)
and E is the fourth-order elastic moduli tensor given by:

Eijy = K601 + 2G040, — 16,011) (32)

where K and G are the elastic bulk and shear moduli, respectively.
Analogous to Eq. (21) one can express £ in terms of the applied stress, &, by substituting Eqs. (13) and
(14) into Eq. (7), such that:

R E—
8?;1 = (Eijkll - Eijkl)akl (33)

where E-' and E ' are the inverse counterparts of Egs. (30) and (32), respectively.

3.3. The strain energy release rate (%)

The strain energy releaseErate % for the isotropic damage case is defined as the rate of change in the elastic
potential energy density ¥ with respect to the specific damaged area 4P for a linear elastic material, such
that:

—FE

oY
G=——= 34
Now, we illustrate the derivation of the strain energy release rate ¢ in one dlmensmn Consider an elas-

tically loaded body containing microdamages (Fig. 5). The potential energy P for damage growth is given
by:

P oU-w (35)

where U is the strain energy stored in the body (6¢f/2) and W is the additioE%I energy necessary for damage
growth and obtained from the work done by ¢¢f. The potential energy ¥ , therefore, can be written as
follows:

7= —loe® (36)

Eq. (34) is obtained when the loading is stress controlled (the dlsplacement is fixed). However, if the loading
is strain controlled (the load is fixed), the potential energy P s given as:

—E
Y =lge" (37)

Now substitution of Eq. (37) into Eq. (34) along with ¢¥ = ¢ /E, yields the following expression:

1|20 0o , 0 (1
=3 faﬁ”afl—o(iﬂ (38)

The stiffness of the body E is decreasing whether the body is rigidly gripped (strain control) such that the
damage growth would result in a stress drop or whether the stress is fixed (stress control) such that the
damage growth would result in a strain increase. For the strain control case, both ¢ and £ would decrease,
but the ratio ¢/E would remain the same, such that:
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1 dc 0 1
- — (=) =0 39
Eoad " aap <E) (39)
using the above equation with Eq. (38), the following expression is obtained for ¢, such that:
1,0 /(1
gZGaAD<E) 40

In the case of stress control or strain control loading, the magnitude of 7 s equivalent as given by
Egs. (36) and (37). Thus, under fixed stress loading condition the strain energy release rate is the same as
given by Eq. (40), only the sign is reversed, reflecting the fact the ¢ is independent of the type of load
application (e.g. displacement control, load control, combinations of stress change and strain change).

We found for the case of isotropic damage (Eq. (22)) that E for one-dimension can be expressed in terms
of the undamaged stiffness £ and the damage variable ¢ as follows:

E=E(1 - ¢) (41)
with ¢ = AP /4 is given by Eq. (11).
Substitution of Eq. (41) into Eq. (40), yields the following expression for the energy release rate %:

0.2

G =—— 42

AE(1 — ¢)° (42)
By substituting the nominal stress ¢ from Eq. (10) along with the elastic strain energy equivalence principle
(Eq. (16)), the strain energy release rate % can be written as a function of the energy potential and the

damage variable as follows:

—E
2y
G=— 43
A1 — ) (43)
The strain energy release rate for the anisotropic damage can be defined as follows:
—FE

oY
= — 44
= (44)

where A = APA? as defined in Eq. (23).

Similar to the procedure outlined above, one can derive the strain energy release rate for the anisotropic
damage case (%) with the aid of the definition presented by Egs. (23), (30) and (31). Assuming that the total
area of the RVE’s facets in the n,, n,, and n. normals are constant, one can write % as follows:

—E M) 3,

G, =2V Mkp,qﬁ Vi (45)
a ij

Using Eq. (27), one can write:
oM, !

szq = ~Jipigas (46)
where J is a sixth-order tensor and is given by:
Jkplqah = %(51q5ka5pb + 5kp51a6qb) (47)

Hence, Eq. (45) can be written as:
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—E 0¢,
gij = 2y Mkp/qt]kplqab$ (48)
ij
where ¥ is given by:
—FE _ =—-1_ -
V" =30,E ;0u = %aleijkllakl -

It is noteworthy that since the magnitude of P s path independent as was shown in the beginning of this
section, the expression of ¢ does not differ whether the imposed loading is strain control or stress control.
This particularly agrees well with the definition of strain energy release rate made in fracture mechanics
(Thomason, 1990; Anderson, 1994; Hertzberg, 1996). However, this does not imply that the strain energy
release rate, presented in Eq. (43) for isotropic damage or Eq. (48) for anisotropic damage, is path inde-
pendent. The expression for the strain energy release rate, which is used later to define the conjugate
damage force, has in its composition the damage variable ¢ which is path dependent. This makes both the
strain energy release rate and the damage conjugate force path dependent.

4. Coupled damage/plasticity thermodynamic formulation
4.1. Helmholtz free energy density

In this work, the elasto-plastic-damage material behavior is considered. This implies that stress path
material dependence and the non-linear material response are considered. Thus, the dependent constitutive
variables are functions of the total elastic strain tensor, &, and m,- of internal state variables,
Ny (k=1,... 100 = 1). Within the thermodynamic framework, the Helmholtz free energy density can
be written as:

V= PR (50)

‘ij?

Since the main objective is to develop strong-coupled constitutive equations for a plastic-damaged
material, the effects of plastic strain hardening and microdamage mechanisms are to be considered. Ex-
perimental observations show that the accumulation of the material defects during the deformation process
has a tendency to form macroscopically localized deformation regions. In those localized zones, many of
defects may undergo irreversible growth; coalescence of pre-existing cracks and voids may occur; propa-
gation of dislocations may proceed; and new defects may nucleate and their ultimate coalescence results in
failure. Moreover, intensive interaction mechanisms of the evolved defects may take place at those localized
zones; such as dislocation—dislocation interaction, microdamage-microdamage interaction, crack domi-
nated—dislocation interaction, dislocation dominated—crack interaction, dislocation/crack—grain boundary
interaction, etc. In order to consider such mechanisms in the constitutive equations, a finite set of internal
state variables N, acting at the microstructural level, representing either a scalar or a tensorial variable are
assumed such that (Voyiadjis and Deliktas, 2000):

Ny = V(o p, Ly 7y (15,-,-) (51)

where a is the plastic flux variable related to the kinematic hardening (movement of the loading surface), p
is the equivalent plastic strain related to the isotropic hardening (size of the loading surface). Furthermore,
since this work focuses on the development of a coupled plastic-damage framework based on the ther-
momechanical postulates, the various possibilities to describe anisotropic damage are to be presented here.
The damage internal variables consist of the damage flux variable I' corresponding to the kinematic
hardening (movement of the damage surface), » the cumulative inelastic-damage strain (size of the damage
surface), and ¢ the anisotropic damage tensor. p and r can be expressed as follows:



2626 R K. Abu Al-Rub, G.Z. Voyiadjis | International Journal of Solids and Structures 40 (2003) 2611-2643

3
5 éénde (52)
t . .
= /0 §9¢id (53)
Using the Clausius—Duhem inequality for isothermal state, one obtains:
Gijéij — pl/} =0 (54)

where p denotes the mass density. In Eq. (54) the total strain rate tensor, &, is decomposed into two parts:
total elastic part, & = & + & and inelastic part, &' = & + &9.
The time derivative of Eq. (50) with the respect to its internal state variables, ¥;, is given by:

T By o' o,

7p _|_ —1;
ij op~ S ory "
Substituting the rate of the Helmholtz free energy density, Eq. (55), into the Clausius—Duhem inequality,
Eq. (54), along with Eq. (5), one obtains the following thermodynamic constraint:

2 by (55)

oV \g, 4 OV, oY . oV . ov . ov
- E . —p—p—p—T;—p—F— p—— ., =
(0,,, pagg)s,_, 0ty = Pyt~ PP T Par, Ly—pm-t=r3 o ¢; =0 (56)

Eq. (56) results in the following thermodynamic state laws for the conjugate thermodynamic forces:

pg_"’ (57)
=g (59)
R:p@a_j (59)
Hy= ot (60)
- (61)
_Y,,j:pa@% (©2)

where X, R, H, K, and —Y are the thermodynamic forces conjugate to the fluxes a, p, I', r, and ¢, re-
spectively.

The complexity of a model is directly determined by the form of the Helmholtz free energy ¥ and by the
number of conjugate pairs of variables. The specific free energy, ¥, on the long-term manifold (neglecting
the short-term manifolds) is assumed as follows:

1 1 1 1 |
p¥ = §8§Etjk1(¢)8;5 +3 Coyjou; + Q<P + Ee_bp) + Eart‘jrt‘j +4q <” + Ee_u> (63)
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where E(¢) is the fourth-order damage elastic tensor and C, Q, b, a, and ¢ are material-dependent con-
stants.

The form of the first term in Eq. (63) has been often postulated in damage mechanics, and is based on the
concept of the effective stress @ so that it presents the same strain or the same elastic energy as a damaged
element subjected to the nominal stress . The rest of the terms in Eq. (63) have been assumed in this form
in order to derive non-linear evolution equations for the isotropic and kinematic hardening that describe
more accurately the plasticity and damage deformation mechanisms. Where the second and third terms
take a form as proposed by Chaboche (1989). The forth and fifth terms are assumed analogous to the
second and third terms, respectively for the case of damage.

The proposed definition of ¥ allows the derivation of the constitutive equations and the internal dissi-
pation described next. The state laws of the assumed internal state variables are obtained by substituting
Eq. (63) into Egs. (57)—(61), such that:

aij = Equ(en — &y — ) (64)
Xi; = 3Coy; (65)
R=0Q(l—¢e™) (66)
Hij =al; (67)
K = g(l — &) (68)

Now, one can obtain an expression for the damage driving force ¥ in terms of the strain energy release rate

presented in Eq. (45). By using the chain rule, the thermodynamic state law of Y (Eq. (62)) can be written
as follows:

oY* 042

Yi=raam, 39,

ij

mn

(69)

Using the definition of strain energy release rate for anisotropic damage (Eq. (44)) and the physical defi-
nition of the damage tensor ¢ (Egs. (23) and (24)) along with the assumption of 4 designating the total areca
of the RVE’s facets in the n,, n,, and n, directions, one can write Eq. (69) in terms of the strain release rate,
%4, as follows:
04P
Yt” = {qmn o (70)
S
Substituting the expression derived for the strain energy release rate for anisotropic damage ¢ (Eq. (48))
into Eq. (70), one can express the damage driving force Y as follows:

—E
Y =2V MipigJipiqis o

where 7" and J are given by Egs. (47) and (49), respectively. Furthermore, we may replace Vo6 /2 by
its expression in terms of equivalent stress G.q = 1/37 : 7/2 and the hydrostatic stress P = trac(a)/3 as
follows:

7T P

6G 2K

where K = 3E/(1 — 2v), G = E/2(1 + V), and ¥ is the Poisson’s ratio. For the isotropic damage case we may
write an expression for Y as follows:

(72)
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2 2
—x *
g

"TE1I-g) E1-9) )
with
7 = Geg2(1 +7) +3(1 — 20)(P/5e)] (74)

where ¢* = (1 — ¢)a*. This is referred to as the equivalent damage stress according to the notation by
Lemaitre and Chaboche (1990). The ratio P/G,, expresses the triaxiality of the state of stress.

4.2. The dissipation function and the maximum dissipation principle

Using the equations of state (Egs. (57)—(62)), the Clausius—Duhem inequality expression (Eq. (56)) be-
comes:

IT = 0,(&, + &) — X6y — Rp — Hyly — K+ Vb, > 0 (75)

where IT defines the dissipation due to plasticity and damage morphologies and requires to be non-negative.
It can be seen from the dissipation function II that both irreversible and reversible damage strains cause
energy dissipation. The irreversible strains through ¢ : £¢ and the reversible strains through Y : ¢.

The rate of the internal state variables associated with plastic and damage deformations are obtained by
utilizing the calculus of functions of several variables with the Lagrange multipliers A and A%, respectively.
The dissipation function IT (Eq. (75)) is subjected to the two constraints, namely /' = 0 and g = 0 (Voyiadjis
and Kattan, 1992a), such that:

Q=1I-/°f- % (76)

One now can make use of the maximum dissipation principle (Simo and Honein, 1990; Simo and
Hughes, 1998), which states that the actual state of the thermodynamic forces (e, Y ) is that which max-
imizes the dissipation function over all other possible admissible states. Thus, we maximize the objective
function Q by using the necessary conditions as follows:

oQ 0

a()‘l-j =0 and a—Ylj 0 (77)

Substitution of Eq. (76) into Eq. (77) along with Eq. (75) yields the thermodynamic laws corresponding to
the evolution of the total inelastic strain rate (¢') and the damage variable (¢), where Eq. (77), gives the
inelastic strain rate as follows:

. . 0of .4 Og

T 78

SU aO'i/ aO'l:/' ( )
Considering the earlier postulate of the additive decomposition of the inelastic strain rate into plastic and
damage parts, Eq. (8), the following assumption is made:

o and &d = ida—g (79)

D ip
& =1 '
Y Oo;; Y 0o;;

ij i

This assumption suggests that the inelastic-damage strains, £, may be anticipated even before any plastic
deformation can be observed, which qualitatively meets the discussion outlined in Section 2.
On the other hand, Eq. (77), gives the damage rate evolution law as follows:

O g
— }p
by =P op iy (80)
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Eq. (80) signifies, once again, that the damage growth occurs even if there is no plastic flow (i.e. P = 0),
which agrees well with the experimental observations in brittle materials and justified in Fig. 5.

In order to obtain non-associative rules for the damage and plasticity hardening variables, one can as-
sume the existence of a plastic potential F and a damage potential G such that they are respectively not
equal to f and g. This postulate is essential in order to obtain non-linear plastic and damage hardening
rules, which give a more realistic characterization of the material response in the deformation process. The
complementary laws for the evolution of the other internal state variables can then be obtained directly
from the generalized normality rule, such that:

iy = I (81)
p=—i'e (2)
by -1 oE (83)
= —/idg—g (84)

where A" and A are determined using the consistency conditions / = 0 and g = 0, respectively.

The next step is the selection of the appropriate form of the plastic potential function F, the plastic yield
surface f, the damage potential function G, and the damage growth surface g in order to establish the
desired constitutive equations that describe the mechanical behavior of the material.

4.3. Plasticity and damage dissipation potentials and hardening rules

4.3.1. Plastic dissipation potential and hardening rules

Once a material is damaged, further loading can only affect the undamaged material. Thus, the damage
potential function G is defined in terms of the effective stresses and strains. By combining plasticity with
damage, it seems natural that plasticity can only affect the undamaged material skeleton. Thus plastic
potential F is also defined in terms of the effective stresses and strains. The plastic potential F' is defined as:

F=f+7-X;X, (85)

where y and C are material constants used to adjust the units of the equation. f is of a von Mises type given
as follows:

3 _
f= \/E(thth)(Tinij) —ayp —R(p) =0 (86)
where ay,, is the initial size of the yield surface, and 7 and X are expressed in terms of the damage tensor M

(given by Eq. (27)) and the corresponding damage states as follows (Voyiadjis and Kattan, 1999):

= gl /
Ty = My ;0 where M’

; it = Mujt — M9y (87)

and

Xij = MyjiXu (88)
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The plastic parameter AP > 0, which is known as the plastic consistency parameter, is assumed to obey the
following Kuhn-Tucker loading/unloading conditions:

(<o=1=0 elastic unloading
f<0 and f{ =0= /" =0 p <= { neutral loading (89)
=0=>/I">0 plastic loading

In order to derive the evolution of the plasticity isotropic hardening function, the time rate of Eq. (66) gives:

R = bOpe™"” (90)
A relation between R and p can be obtained from Eq. (66), such that:

p:—%ln(l—g> o1
which upon substituting it into Eq. (90) yields the following expression for R, such that:

R =b[0 - Rlp (92)

The isotropic hardening represents a global expansion in the size of the yield surface with no change in
shape. Thus for a given yield criterion and flow rule, isotropic hardening in any process can be predicted
from the knowledge of the function R, and this function may in principle, be determined from a single test
(e.g. the tension test). Therefore, the effective isotropic hardening function R is related to the nominal
isotropic hardening function by Eq. (10) as follows:

R
1 - d)eq
where (Voyiadjis and Park, 1997)

(:bcq =1/ ¢ij¢ij (94)

Using Eq. (82) along with the chain rule and Egs. (86) and (93), it can be easily shown that p is related to A?
by:

R:

(93)

= (1= )b (95)
Using the chain rule and Eq. (88), Eq. (81) is now expressed as follows:

iy = —iPMml,,,% (9)
Substitution of Eq. (85) into the above equation yields:

iy = — I Moy (% + % %Xm> (97)

since 0f /0X = —0f /0@ as it is clear from Eq. (86), it is easily shown with using the chain rule and Egs. (26),
(79)1, (88) together with the time rate of Eq. (65) that the evolution equation of the plastic kinematic
hardening X is related to &, X, and M as follows:

)'(ij = %CSE - yipMmin/'Mmrners (98)

Substituting Eq. (95) into the above equation, gives the following form for the evolution equation of the
backstress tensor X, such that:
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)(U = %ng - '))(1 - ¢eq)MmianmrnerSp (99)

4.3.2. Damage dissipation potential and hardening rules

The anisotropic damage governing equations are formulated in spirit of plasticity. Thus, analogous to the
plasticity potential function F, one can assume the following form of the damage potential function G in the
space of the damage forces and the conjugated forces of the hardening variables (Voyiadjis and Deliktas,
2000):

1d
G:g‘f'EEHinij (100)

where d and a are material constants used to adjust the units of the equation. g is the damage growth
function postulated as follows:

g =/ (Y — Hy)(¥; — Hy) — ls = K(r) = 0 (101)

where /4 is the initial damage threshold. The damage consistency parameter A% > 0 is assumed to obey the
following Kuhn-Tucker conditions:

<0=1"=0 undamaged state
g<0 and g{ =0= =0 » < { damage initiation (102)
=0=1'>0 damage growth

Using Eq. (84) along with Eq. (101), the following relation is obtained:

M= (103)
Taking the time rate of Eq. (68) and expressing » in terms of K, the evolution of the damage isotropic
hardening function K can be easily written as:

K =c(q — K)# (104)

Now, one can derive an expression for the damage kinematic hardening rule by taking the time rate of Eq.
(67) and making use of Egs. (80), (83), (100) and (103) such that:

. ag
I'I,-j( 6Y,, dH) (105)

Next, explicit expressions for the plasticity and damage Lagrange parameters JP and A9 are derived using
the consistency conditions f and g, respectively.

4.4. Plasticity and damage consistency conditions

Since @, X, and R are functions of ¢ and their corresponding nominal counter parts ¢, X, and R, it
follows that the yield function /" may be expressed as a function ¢, such that the corresponding consistency
condition f = 0 can be written as follows:

of of fp, o
f_— oy Xt apR +6¢U

ox;;
By assuming that the elastic-damage stiffness, E, is constant within each stress/strain increment, which is the
case in the strain-driven problem, one can write the time rate of the Cauchy stress tensor (&) as follows:

qbl/ 0 (106)

6i; = Eyjuéy (107)
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Making use of the above equation, Egs. (78), (80), (86), (92), (93), (95), (99), and the chain rule with
noticing that 0f /0X = —0f/0a, it can be shown, after some manipulation, that the consistency condition,
Eq. (106), gives the following relation between A* and A%, such that:

a“ip + (112):(1 = b1 (108)
where
of of 2 _,0of of 6f of of b(O—-R)
= — M - —= 109
a 60',-/ Eljkl aO'kl += 3 CaGU 60"/ ao_[j Mmijmrns)(rs ad)l:/' aYU (1 _ ¢eq)2 ( )
of 0g Oof Og
= 110
=8, M oay o, O, (110)
and
0 .
bl :%Eijklskl (111)
On the other hand, the consistency condition for the damage, ¢ = 0, can be written as follows:
) og . og - og
112
E=oy, " T om, M Tk (112)

However, since the damage driving force Y is a function of ¢ and ¢ (see Eq. (71)), the damage consistency
condition can be rewritten as follows:

. Og og og -
=_° - = 11
g a , o-l/ + aH H + K + ad)lj (blj 0 ( 3)

Making use of Egs. (78), (80), (101) and (103)—(105) along with the chain rule, it can be shown, after some
manipulation, that the consistency condition, Eq. (113), gives the following relation between A and i, such
that:

a21jup + Clzzid == b2 (114)

where
og of 0g 9of

-2 115

ang ao’,-j ijkl A oy a¢ij oY, ( )
og og og 0g Og

==F —H,;—— - K 116

an aalj ikl A do o1 —d aYU ij a(,b[j @YU + C(q ) +a ( )
and
0 )

by = ggijEijklakl (117)

The plastic multiplier, P, and the damage multiplier, 44, can be found from the linear system of equations
given by Egs. (108) and (114) such that:

P L[ an —anlfb
: —_— 118
{/ld} A[—am an ]{bz} (118)
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where

A = anaxn — apna

4.5. The elasto-plastic-damage tangent stiffness

2633

(119)

Substituting A* and A* from Eq. (118) into Eq. (78), the evolution equation for the inelastic strain rate &'

can be written in the following form:
.l .
& = Xijki®kl
where y is a fourth-order tensor and is expressed as follows:

Yijr = Bt + Zijua

where
of
P = -2 A.E,,
ijkl 60,-/- rsterskl
0g
Zi' :7BrsErS
jjkl aaij kl
L PRV
rs — A 226 3 12 aO'rS
s _ L[ o of
= allao_m asg o0,

Substitution of Egs. (120) and (33) into Eq. (107), yields the following:

gij = Dijklskl

where D represents the elasto-plastic-damage tangent stiffness given by:

Dijii = Eijii — Eijmn Yok

The tangent stiffness D has two possible expressions, such that:

Dot — o if f<0 or f<0 and g<0 or <0
M\ Ejjt = Euntom if =0 PF =0 or g=0< ig=0

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

The above expression signifies that D = E if there is no damage and no plastic flow; and D = E if there is

total crack closure, total void contraction, and no plastic flow.

For the sake of completeness we outline in Appendix A the derivatives that are necessary to calculate the

above evolution equations.

5. Qualitative and quantitative results

The pure damage and the coupled plastic-damage model behavior are examined in the sequel for the case
of isotropic damage. The new features that the proposed model is attempting to represent are illustrated by

providing qualitative and quantitative plots of stress versus strain.



2634 R K. Abu Al-Rub, G.Z. Voyiadjis | International Journal of Solids and Structures 40 (2003) 2611-2643

5.1. The case of pure isotropic damage

In this section some properties of the damage model proposed in Section 4.3.2 are investigated for some
simple uniaxial processes using a dissipation mechanism produced by the damage potential only. The
damage criterion with linear isotropic damage hardening is considered such that Eq. (101) can be expressed
as follows:

_E(1-¢)
(1+¢)°

where & = ¢ + ¢ + ¢4 is the total strain, /4 is the damage threshold, and ¢ is the damage hardening
modulus. The evolution of the damage variable ¢ in uniaxial extension can be obtained from Eq. (129) for a
given ¢, ly4, and ¢. The limit uniaxial strain and stress at which damage initiates are obtained by setting
¢ =0 in Eq. (129) such that:

&y = ld/E, gy = \/Eld (130)

The elastic strain, ¢°, the elastic-damage strain, ¢, and the inelastic-damage strain, &

from the relations presented in Section 3.1 and Eq. (79), such that:

& —1lg—qp=0 (129)

, can be obtained

(1-¢)  w_(0-¢)-(0-¢ 4_ 20
£=-——T>Tgp &= g, &‘=——¢ 131
() () 9 130
For ¢ =0, & = ¢ and &4 = 9 = (. The stress relation follows from the elastic constitutive relation:
: (1-¢)~
0 = Dgce with Dy =-——-—F 132
T+ ¢) (13

The stress—strain curves are shown in Fig. 7 for different values of the damage threshold /; and the damage
hardening modulus ¢. It is evident that the model allows simulating a continuous change from hardening to
softening as well as the reduction in the stiffness. It is noteworthy that the energy necessary to initiate the
damaged state (that can be interpreted as fracture energy Gy) is finite, in fact:

% 1, 1
Gf:/0 ads:EEe‘ﬁ:Eld (133)

Therefore, for ¢ = 0, Eq. (129) characterizes a fracture-type criterion. Moreover, it can be noted from
Fig. 7(b) that for ¢ = 0 (i.e. no damage hardening), for each ¢ there is a unique value of stress; while for
q # 0 (i.e. with damage hardening), for each ¢ there are two possible stress values. Therefore, due to the
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7] o 600 20
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0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
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Fig. 7. Influence of the (a) /4 parameter and (b) ¢ (Mpa) parameter for E = 199 GPa.



R.K. Abu Al-Rub, G.Z. Voyiadjis | International Journal of Solids and Structures 40 (2003) 2611-2643 2635

presence of damage the application of this model to structural problems will cause strain localization with
the consequent mesh-dependency of the numerical results. Several regularization approaches, either in time
or space, have been proposed in the literature to accommodate this problem (see Voyiadjis et al., 2001).
However, the purpose of this study is to introduce the model and the possible strategies for coping with
strain localization are beyond the goal of the present work.

The loading—unloading behavior is considered in Fig. 8(a). When damage occurs, it can be seen upon
unloading that there is a permanent strain in the stress free state. This qualitatively agrees with the ex-
perimental observations in concrete (Van Mier, 1984), where plasticity is assumed to be negligible. The
stress—strain plot in Fig. 8(a) with damage hardening is obtained for very large value of ¢ = 50 MPa so that
the secant stiffness, Dy, after first damage does not degrade immediately, as it has been observed in some
experimental tests on concrete. Hardening then decreases fast as soon as damage localization develops.
Fig. 8(b) shows the variation of the different coupled-damage strains with respect to the damage variable ¢.
Fig. 8 shows an important feature of the proposed damage model that has not been considered by most of
the previous models. Furthermore, it can be seen that for the same corresponding imposed strain, the
elastic-damage modulus is bigger for pure damage with hardening than without hardening. This implies an
increase in the material strength due to interaction between microdamages. This is also a new aspect was
not provided by many of the previous damage models.

The influence of the hardening modulus ¢ is shown in Fig. 9 for /; = 3.0 MPa and E = 199 GPa. The
evolution of ¢ and the elastic-damaged modulus E are also reported. Increasing values of ¢ determine
stronger reduction in ¢ and stronger increase in E. The parameter ¢ particularly influence the degradation
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Fig. 8. Damage hardening effect. (a) Loading—unloading uniaxial tensile process, (b) variation of different type of strains with damage,
for E = 199 GPa and /4 = 3 MPa.
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Fig. 9. (a), (b) Influence of ¢ (MPa) parameter for E = 199 GPa and /4 = 3 MPa.
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of the elastic modulus and the concavity of the stress—strain curve E(¢) that can be obtained from ex-
periments (Fig. 9).

5.2. Coupled plasticity and damage—application to high strength steel

In this section the experimental results of Hesebeck (2001) for a high strength steel are numerically
simulated using the proposed model. The tested high strength steel 30CrNiMo8 contains 33% carbon.
Further details of the chemical composition are documented in Hesebeck (2001). In the mechanical
experiments, force controlled tension tests with partial unloadings were performed at a stress rate
¢ = 30 MPa/s~!. The resulting stress versus strain curve obtained by Hesebeck (2001) is plotted in Fig. 10.

Considering the fact that there are no unified experimental methods developed to quantify the damage
variable, one can obtain ¢ with sufficient precision by evaluating the unloading (i.e. the decrease in the
stiffness) in the stress—strain curve, such that one can write from Eq. (22) the following expression:

E
b=1-/% (134)

Voyiadjis and Venson (1995) advocated the use of the sectioned specimens together with the use of the
SEM for the determination of crack densities. However, different interpretation of the experimental damage
variable have been made by Hesebeck (2001), which is based on the strain equivalence principle (i.e.
E = E(1 — ¢)). However, the strain energy equivalence is considered in the present work. The result for the
damage variable using Eq. (134) is plotted in Fig. 11 versus the elastic-damage modulus, E.

Identification of the material constants associated with any proposed material model is one of the most
challenging issues for researchers in order to obtain better representation of their material models. The
identification approach of the material constants for the evolution equations outlined in the previous
sections is based on the experimental results in Figs. 10-12 by using the least-squares minimization method.

Young’s modulus, Poisson’s ratio, and the initial flow stress were pre-determined by Hesebeck (2001) as
E =199 GPa, v = 0.3, and oy, = 870 MPa, respectively. The object of the identification process here is to
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Fig. 10. Stress-strain diagram for damaged and effective undamaged 30CrNiMog8-steel as compared to the experimental data.
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Fig. 11. Elastic-damage modulus (£) versus damage variable (¢).
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Fig. 12. Comparison of experiments by Hesebeck (2001) with the simulated data of the present work for the damage variable versus the
inelastic strain.

identify the four parameters (Q, b, C, y) of Egs. (92) and (99), characterizing the plastic isotropic and ki-
nematic hardening, and the five parameters (/y, g, ¢, d, a) of Egs. (101), (104) and (105), characterizing the
initial damage threshold, and damage isotropic and kinematic hardening. The plasticity hardening pa-
rameters are determined using the effective stress-effective plastic strain curve in Fig. 10, while the damage
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Table 1

The plasticity and damage material parameters for 30CrNiMo8 high strength steel
Mechanism Isotropic hardening Kinematic hardening Initial flow threshold
Plasticity 0=409 MPa »=9.3 C=15,000 MPa y=37 oyp =870 MPa
Damage qg=82MPac=52 a=14.70 MPa d =0.11 l4=3.8 MPa

parameters are determined using all the experimental data in Figs. 10-12. The obtained material parameters
are listed in Table 1.

Preliminary results not reported here revealed that the effective stress-effective plastic strain curve could
be obtained with reasonable agreement with the experimental data by considering only the isotropic
hardening evolution, but by using different material parameters than those listed in Table 1. Nevertheless
this is not a problem for the practical applicability of the developed model. The emphasis of this work is to
understand better the different deformation morphologies that affect the material behavior by considering
their synergetic effects. Therefore, the influence of the different cooperative phenomena on plasticity and
damage growth are discussed here. The curves plotted in Figs. 1315 represent the synergetic effects of the
combined isotropic and kinematic hardening associated with plasticity, combined isotropic and kinematic
hardening associated with damage, and damage mechanisms.

Fig. 10 depicts the resulting effective stress versus the effective plastic strain curve of the proposed model,
thus revealing a very good agreement with the experimental data. Also, the true stress (¢ = (1 — ¢)3) versus
the inelastic strain (¢! =& /(1 — ¢)) curve is shown in Fig. 10. The results of the present work for the
damage variable (¢) versus the inelastic strain (¢') are shown in Fig. 12 while considering the experimental
calculation of the damage variable and using both the strain equivalence and the strain energy equivalence
principles. Also for this type of data it becomes apparent that the proposed model is able to give a good
agreement with the experimental data for the material under consideration. High non-linear dependency
between ¢ and &' is noticed in Fig. 10, which agrees well with the experimental observations.
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Fig. 13. Evolution of the plasticity dissipative forces using the present model.
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The evolution of the plasticity dissipative forces R and X, and the damage dissipative forces K, H, and Y
are shown in Figs. 13 and 14, respectively. Closed form expressions have been derived for the plasticity and
damage hardening forces by integrating Egs. (92), (99), (104) and (105) over the uniaxial tensile stress—
strain data. The damage force Y is simplified for the one-dimensional case by using Eq. (71).

The calculated additive decomposition of the total elastic strain (¢F) into the ordinary elastic strain (&%)
and the elastic-damage strain (&) as a function of ¢ is shown in Fig. 15(a). In addition, the calculated
additive decomposition of the total inelastic strain (¢') into the plastic strain (¢°) and the inelastic-damage
strain (¢9) as a function of ¢ is shown in Fig. 15(b). Fig. 15 shows qualitatively correct behavior as an-
ticipated in the discussion outlined in Section 2.

Although this study is restricted to small strains, usually up to 2-4%, the results in Figs. 10-15 are ex-
tended to inelastic strains up to 6%. However, the proposed model is in reasonable quantitative agreement
with the experimental data for uniaxial loading and exhibits a qualitatively correct behavior for the
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evolution of the different strain types. Moreover, one will find in the literature considerable fewer published
experimental results for multi-axial loadings. In this work uniaxial tension experimental data with un-
loadings are used to obtain the constitutive parameters of the proposed model. The reduction in the elastic
stiffness, particularly, has been measured from the uniaxial case. Therefore, the present model, for the time
being, cannot be tested for more general paths. This will presented in a forthcoming paper.

6. Conclusions

In the current paper the systematic construction of a thermodynamic consistent model for ductile ma-
terials, which provides a strong coupling between plasticity and damage, is presented. The model considers
the different interaction mechanisms exhibited by the plasticity and the damage morphologies. Plasticity
and damage combined isotropic and kinematic hardening are considered. In addition, an additive de-
composition of the total strain into elastic, plastic, and damage parts is proposed in this work. The damage
component is further decomposed into two parts, one is due to the crack closure and void contraction and
the other is due to the lack of crack closure and void contraction. The later may be attributed to the
geometrical constraints set up by the interacting microcracks, microvoids, dislocation densities, and grain
boundaries. Although microstructural arguments are used to motivate many aspects of the formulation, the
fact remains that the formulation is phenomenological. The material behavior is described through a
suitable set of internal variables and whose relation to micromechanical structure and processes is not
exactly defined.

A strong coupling between the two dissipative processes, plasticity and damage, is implemented. This
strong coupling have been assessed by using two separate plasticity and damage surfaces with separate non-
associated flow rules in such a way that both damage and inelastic flow rules are dependent on the plastic
and damage potentials. Two damage mechanisms have been considered, one mechanism is coupled with
plasticity, and while the other one occurs independent of plastic deformation. The dissipation function of
the latter occurs in both the elastic and plastic domains.

Some of the new features of the proposed damage model that are not reflected in the current models are
investigated for some simple uniaxial tensile processes. Moreover, uniaxial tension tests by Hesebeck (2001)
with unloadings for a high strength steel have been used to investigate the coupled plastic-damage behavior.
The proposed model is in a very good quantitative agreement with the experimental data for uniaxial
loading and exhibits a qualitatively correct behavior for the evolution of the different strain types. However,
even though the verification is based on limited set of data, namely that of uniaxial stress and strain, this
could specifically motivate experimentalists to look for the new features that would provide justification for
the approach used in the current study.

The effects of crack closure and void contraction are considered in this work upon unloading. However,
those effects under compressive loading are not considered in this work, which will be the focus of a
forthcoming paper. In addition, explicit treatment of the microdamage distribution (spacing and orienta-
tion) and size, which have a considerable influence on the interaction between defects, will be addressed in a
future work by the authors.

Future work should be directed for implementation of the proposed model in a finite deformation
framework to model problems that exhibit non-homogenous deformation. In addition it will also be used to
investigate the necessity of the proposed additive decomposition of the total strain into elastic, plastic, and
damage parts. These additional investigations should be based on the results of micromechanical charac-
terization of the materials that exhibit heterogenous behavior and on the experimental evidence obtained in
the laboratory accompained by metallographic studies and stereology based quantification methods using
tomography images. Additional aspects for future work is the consideration of the different behavior in
tension and compression for damage. Moreover, the problem of size effect, strain localization, and mesh
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dependency, typical of damage evolution, has not been addressed in this paper. Some of these aspects are
presented in Voyiadjis et al. (2003), Voyiadjis and Abu Al-Rub (accepted for publication) in the framework
of the proposed formulation and the non-local damage theories.

Appendix A

The following relations are necessary for the model implementation:
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