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Abstract

In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model

is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage.

The constitutive equations for the damaged material are written according to the principle of strain energy equivalence

between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of

the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model con-

siders different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-

kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An

additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is

further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to

the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation

and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension

tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement be-

tween the experimental results and the model is obtained.
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1. Introduction

The non-linear material behavior may be attributed to two distinct material mechanical processes:

plasticity (i.e. dislocations along crystal slip planes) and damage mechanics (microcracks, microcavities

nucleation and coalescence, decohesions, grain boundary cracks, and cleavage in regions of high stress

concentration). The two degradation phenomena are described best by the theories of plasticity and con-

tinuum damage mechanics. Thus, a multi-dissipative model that accounts for both the material decohesions

and the dislocations along slip planes is necessary. This is accomplished by adopting two loading surfaces

and two potential functions, one for plasticity and the other for damage.
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Ductile materials usually fail as the result of nucleation, growth, and coalescence of microdamages.

Experimental observations show that the accumulation of microdamages has a tendency to form macro-

scopically localized damage, which is a precursor to failure. This progressive physical process of degra-

dation of the material mechanical properties up to complete failure is commonly referred to as damage.
Various damage morphologies have been described in the literature, such as creep damage, low cycle fa-

tigue, high cycle fatigue, and brittle damage (Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre,

1992; Voyiadjis and Kattan, 1999). The present paper is concerned with anisotropic ductile damage.

Metallographic studies for polycrystalline metals (Thomason, 1990; Anderson, 1994; Hertzberg, 1996)

demonstrate that the ductile damage is basically characterized by three mechanisms of microdamages

growth: (i) nucleation of microscopic voids that initiate at inclusions and second phase particles, failure of

particles or microcracking of the matrix surrounding the inclusion, (ii) growth of the microvoids by means

of plastic strain and hydrostatic stress, and (iii) coalescence or microcracks linking the growing microvoids
with adjacent ones, thus leading to vanishing load carrying capacity of the material, as the damage density

approaches unity.

Many models for estimating the microdamage accumulation in ductile materials have been published,

some of which are based on damage micromechanics (micromechanical damage models) while others based

on the continuum damage theory (phenomenological damage models). The former models are required for

particles of less than 1 lm in diameter. A model of this type was formulated by Gurson (1977), where he

obtained, based on an approximation analysis of spherical voids, a yield function for porous ductile ma-

terials with perfectly plastic matrix. Modification of the Gurson�s model have been proposed by several
authors (e.g. Tvergaard, 1982; Tvergaard and Needleman, 1984). Tvergaard (1982) modified Gurson�s
model to improve the predictions at low void volume fractions. Tvergaard and Needleman (1984) modified

Gurson�s yield function in order to account for rate sensitivity and necking instabilities in plastically de-

forming solids and to provide better representation of final void coalescence. The aspects of Gurson�s
model was outlined in the review article by Nemat-Nasser (1992) and discussed by Voyiadjis and Kattan

(1992a,b), Li (2000), and Mahnken (2002). In this way micromechanical models are based on physical

soundness, and various applications have modeled microdamage growth and ductile failure (Haj-Ali et al.,

2001).
Phenomenological models are based on the concept of Kachanov (1958), who was the first to introduce

for the isotropic case a one-dimensional variable, which may be interpreted as the effective surface density

of microdamages per unit volume (Voyiadjis and Venson, 1995; Venson and Voyiadjis, 2001). Kachanov

(1958) pioneered the subject of continuum damage mechanics by introducing the concept of effective stress.

This concept is based on considering a fictitious undamaged configuration of a body and comparing it with

the actual damaged configuration. He originally formulated his theory using simple uniaxial tension.

Following Kachanov�s work researchers in different fields applied continuum damage mechanics to their

areas in fields like brittle materials (Krajcinovic and Foneska, 1981; Krajcinovic, 1983, 1996) and ductile
materials (Lemaitre, 1984, 1985; Kachanov, 1986; Murakami, 1988). In the 1990s applications of contin-

uum damage mechanics to plasticity have appeared (e.g. Lubarda and Krajcinovic, 1995; Voyiadjis and

Kattan, 1992a,b, 1999; Voyiadjis and Park, 1997, 1999; Voyiadjis and Deliktas, 2000; etc.).

Often, ductile materials undergo a strong plastic deformation, which has a major influence on the

damage evolution and reverse. There are many models with weak coupling between plasticity and damage.

The models that adopt two separate uncoupled damage and plastic loading surfaces with two independent

associated flow rules present a week coupling between plasticity and damage. Those models are being

extensively used by many authors (e.g. Chow and Wang, 1987, 1988; Simo and Ju, 1989; Lemaitre and
Chaboche, 1990; Hansen and Schreyer, 1994; Zhu and Cescetto, 1995; Murakami et al., 1998; etc.). While

there are many models with weak coupling, no consistent model realizing a strong coupling has been

published yet. However, relatively strong coupling between plasticity and damage can be achieved by using

one single smooth generalized yield surface and an associated flow rule for the plasticity and damage
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evolutions (e.g. Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984; Rousselier, 1987; Ehlers,

1995; Hesebeck, 2001; Mahnken, 2002). Those models obviously cannot describe all loadings correctly since

a hydrostatic stress will certainly cause damage before any plastic deformation can be noticed. In addition

most of those models are restricted to low damage levels or dilute distribution of defects and therefore they
fail to account for the interaction of the defects adequately. Another approach to achieve this strong

coupling is by using separate plasticity and damage surfaces with separate non-associated flow rules in such

a way that both damage and plasticity flow rules are dependent on both the plastic and damage potentials

(Voyiadjis and Deliktas, 2000). The later approach is adopted in this work, where the strong coupling

between plasticity and damage is implemented by using two damage mechanisms. One mechanism is

coupled with plasticity, while the other one occurs independent of plastic deformation. The dissipation

function of the latter occurs in both the elastic and plastic domains. To formulate that on the basis of the

thermodynamic principles, the two damage processes are represented by two additive portions in the
dissipation potentials. Because this work focuses on the development of coupled plastic-damage governing

equations based on thermomechanical postulates, the various possibilities to describe the plasticity and

anisotropic damage shall be considered here.

It is generally assumed that the rate of deformation can be additively decomposed into an elastic (re-

versible) part and an inelastic (irreversible) part (e.g. Nemat-Nasser, 1983; Lubliner, 1990; Simo and

Hughes, 1998). �Non-instantaneously reversible� deformation is a more general description of the inelastic

deformation since it is corresponding to the following set of physical phenomena: instantaneous plasticity,

viscoplasticity, damage, and viscodamage. The first type of inelastic deformation is a time-independent
mechanism, which is generally considered in the rate-independent plasticity theories. The viscoplastic de-

formation, which is sometimes qualified as creep, is a rate-dependent mechanism. Both of those two

mechanisms or one of them is generally not sufficient to describe the set of experimental observations.

Therefore, degradation of the mechanical properties up to complete failure should be considered in the

experimental simulations. The damage growth can be time-independent (damage theory) and/or time-

dependent process (viscodamage theory). The evolution, nucleation, and coalescence of microcracks, voids,

and cavities during manufacturing processes and subsequent loading enhance the material to behave ine-

lastically in the elastic and plastic domains. Voyiadjis and Park (1999) summed such defects as an inelastic
strain called the damage strain. They decomposed this damage strain into elastic-damage (recoverable)

component attributed to crack closure and void contraction during unloading, and inelastic-damage (un-

recoverable) component attributed to random distribution and orientation of the cracks that make their

recovery impossible. In accordance with their work, two irreversible strains are considered in this study: the

plastic and the damage strains.

An outline for this work is as follows: In Section 2 we demonstrate the motivated morphologies for the

additive decomposition of the total strain into elastic, plastic, and damage components. Section 3 is devoted

to the physical interpretations of the damage variable for both the isotropic and anisotropic damage dis-
tributions. Furthermore the derivation of the energy release rate is outlined for both isotropic and an-

isotropic damage distributions. In Section 4, we outline a general thermodynamic framework for the

coupled elasto-plastic and damage material behavior. In Section 5, the derived evolution equations are

examined for pure isotropic damage case and applied to simulate the experimental results of Hesebeck

(2001) for high strength steel specimens subjected to tensile loading. This work is restricted to small strains.

2. The strain additive decomposition

Experimental observations show that in general the processes of cold-working, forming, machining of

mechanical parts, etc. can cause an initial evolution of defects in the virgin material state, such as nucleation
of certain amount of cracks, voids, and dislocation patterns. The initial defects induced in the material
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microstructure along with the subsequent defects that occur during deformation process enhance the

material to behave inelastically even before the onset of plasticity. If the material is elastically unloaded

before forming dislocations along slip planes (plasticity), permanent strains are observed. Those strains are

irreversible damage strains, while the reversible strains are of two parts: elastic part and damage part. As
plastic deformations initiate, both damage and plastic permanent deformations are anticipated. Next we

demonstrate this behavior in uniaxial tension and complex loadings.

Imagine an elastically loaded representative volume element (RVE) containing uniformly distributed

(micro)cracks of Mode I, which are triggered by the process of cold working, is deformed by a total strain

e1. A certain part of this strain is elastically recoverable (ee1) and another part is induced by damage (eed1 ).
After the loads are released before the yield limit is reached, the body will have no permanent strains left.

However, the magnitude of the elastic stiffness for the RVE maybe reduced due to the growth of micro-

cracks. This is clearly demonstrated in Fig. 1 which shows the foregoing micromechanics of a continuum
point in the RVE and the corresponding macrostresses and strains. We begin with an unstressed unit cell in

the RVE containing a microcrack of length 2a and a resulting average stiffness E1 (the stiffness of the matrix

surrounding the microcrack remains unchanged by microcrack opening). Up to a certain stress level, the

microcrack will not grow but only open. Therefore, the microcrack length will remain 2a (neglecting the

Poisson�s effect) and the RVE average stiffness will not change. Beyond this threshold, however, the mi-

crocrack extends by an amount 2ðdaÞ and the average stiffness decreases by an amount dE1. Upon the load

release the microcrack will close and no further growth occurs. For the same stress (points b and d) a

greater strain will result, due to the reduction in the RVE average stiffness. In the stress free state there are
no permanent strains left, only the resulted average stiffness (E1) is less than that of the initial body. The

amount of the stored elastic strain energy at the end of the loading process is given by r1cðee1c þ eed1cÞ=2 and

the additional surface energy resulting from the microcrack extension by an amount of 2da is obtained from

the work done by the applied stress r1c½ðee1c þ eed1cÞ � ðee1a þ ee1aÞ�.
Imagine now the elastically loaded RVE containing an arbitrary distribution of (micro)voids and (mi-

cro)cracks of mixed modes (Mode I, II, and III), which are triggered by the process of cold working, and

subjected to a 2-D state of stress. Generally, this situation is more likely to happen in materials than the

Fig. 1. Fictitious uniaxial stress–strain elastic response resulting from a growing microcrack. All the damage strain is recoverable (the

crack is closed but not healed).
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former case. The RVE is deformed by a total strain of e; a certain part of it is elastically recoverable (ee) and

another part is induced by the damage (ed). When the loads are released before yielding is observed, the

body will have, similar to plasticity and in contrast to the previous fictitious situation, permanent defor-

mations (eid). Those irreversible damage strains are attributed to the necessary geometric constraints set by
other (micro)defects. Fig. 2 shows the underlying micromechanics of a continuum point in the RVE and the

corresponding macrostresses and strains in one of the geometric directions. The existing stress state is

assumed of combined biaxial tension and shear (r2 > r1 > s12) with the stress–strain behavior in the two-

direction being accounted for. We start with an unstressed sub-RVE containing a growing microcrack and

microvoid with an average stiffness E (the stiffness of the matrix surrounding the microcrack/microvoid

remains unchanged by microcrack opening). Up to a certain stress level, the microcrack will open and start

growing and the microvoid will expand. This process is accompanied by shape change and reduction in the

average stiffness, dE. Upon the loads release, part of the microcrack will close, the size of the microvoid will
decrease, and no further growth occurs. For the same stress (points b and d) a greater strain will result, due

to the microcrack and microvoid growth and the reduction in the average stiffness. In the stress free state,

permanent strains occur and the resulted average stiffness (E) is less than that of the initial body. Part of the

resulted damage strain, ed, is recovered and another part is permanent. As clearly seen, the recoverable part,

eed, is attributed to partial closure of microcracks and size reduction of microvoids upon unloading (but not

healing), while the unrecoverable part is attributed to lack of closure of all microcracks and unvanishing

microvoids that cause permanent deformation. As we stated earlier, this may be due to the geometrical

constraints set up by the interacting microcracks, microvoids, and grain boundaries.
Both situations are likely to happen under different types of loading. However, the first situation is more

likely to happen in uniaxial tension, while the second situation is likely to happen in complex loading.

One now investigates the total basic one-dimensional behavior in a ductile material. Consider the uni-

axial tension test shown in Fig. 3. In this test, a bar of uniform cross-section is subjected to the uniaxial

loading–unloading history: O ! B ! C, during which the length of the bar takes the following values:

L ! lp ! lpid ! lpd ! l. Stage O ! B corresponds to a monotonic loading beyond the elasticity domain,

Fig. 2. Fictitious stress–strain elastic response of an RVE subjected to a 2-D state of stress (r1 > r2 > s12) resulting from a growing

microcrack and microvoid. Part of the damage strain is recoverable (not healed) and the other part is unrecoverable.
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and B ! C to elastic unloading (C ! B corresponds to elastic loading process). State C corresponds to a

stress-free, unloaded configuration. We can write the following identity:

l
L
¼ l
lpd

lpd

lp
lp

L
ð1Þ

or

k ¼ kekdkp ð2Þ

where k ¼ l=L is the axial stretch ratio at the end of O ! B, ke ¼ l=lpd can be viewed as the elastic stretch at

the end of the elastic transformation B ! F, kd ¼ lpd=lp corresponds to the damage stretch between D state

and a damage-free state between C and O, and kp ¼ lp=L corresponds to plastic stretch between O state and

a plastic-free state between C and O. The term ‘‘between C and O’’ is used due to the fact that part of the

permanent deformation is contributed by plasticity and part from the non-recoverable damage.
Note that the superscripts here do not imply tensorial indices but merely indicate the corresponding

deformation configuration such as ‘‘e’’ for elastic, ‘‘p’’ for plastic, ‘‘d’’ for damage, ‘‘ed’’ for elastic-damage,

‘‘id’’ for inelastic-damage, and ‘‘pid’’ for plastic-inelastic-damage

Additionally kd can be written as:

lpd

lp
¼ lpd

lpid
lpid

lp
ð3Þ

or

kd ¼ kedkid ð4Þ

where ked ¼ lpd=lpid is the elastic-damage stretch (recoverable damage stretch) between states D ! C, and

kid ¼ lpid=lp is the unrecoverable damage stretch between C state and a damage-free state between C and O.

No effective configurations are used to interpret the above definitions.

In the context of the kinematic linear theory of deformation (infinitesimal deformation) and motivated

by the above schematic illustration, by the micromechanics of single crystal plasticity (Nemat-Nasser, 1979,
1983), and the continuum damage mechanics (Voyiadjis and Park, 1999), one can assume the additive

Fig. 3. Uniaxial stress–strain response of a metallic specimen.
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decomposition of the total strain (e) into elastic (ee), plastic (ep), and damage components (ed). Although the

damage process is an irreversible deformation thermodynamically; however, the deformation due to

damage itself can be partially or completely recovered upon unloading. Thus, the damage strain component

is also decomposed into elastic (reversible) and inelastic (irreversible) parts. The recoverable part is at-
tributed to cracks closure upon unloading (but not healing), while the unrecoverable part is attributed to

unclosed cracks and voids that cause permanent deformation. This may be due to the constraints set up by

the interacting (micro)cracks, (micro)voids, dislocation densities, and grain boundaries. Both reversible and

irreversible parts cause degradation in the material stiffness. Hence, in small strain theory, the total strain

can be additively decomposed as:

eij ¼ eeij þ epij þ edij ð5Þ

and

edij ¼ eedij þ eidij ð6Þ

where eed and eid are the elastic-damage and inelastic-damage parts of the damage strain, respectively. In

this work the subscripted letters after the variables indicate the tensorial nature of the variables unless

specifically stated otherwise.

During the unloading process, two types of strains are purely reversible: the ordinary elastic strain, ee,

and the elastic-damage strain, eed. Thus, the total reversible elastic strain, eE, due to unloading can be

obtained by:

eEij ¼ eeij þ eedij ð7Þ

On the other hand, the total inelastic strain, eI, arises from the two irreversible sources: inelastic damage
and plastic flow such that:

eIij ¼ eidij þ epij ð8Þ

Eq. (5) can therefore be expressed as follows:

eij ¼ eEij þ eIij ð9Þ

Both components of the damage tensor eed and eid are functions of an internal variable called the damage

variable, /, which is a scalar for isotropic damage and a tensor for a continuum that exhibits anisotropic

damage. In the following section, we interpret the physical definition of the damage tensor in one-di-

mension and three-dimensions.

3. Physical interpretation of the damage variable

The damage variable is a macroscopic measure of the microscopic degradation of a RVE (Kachanov,

1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Lubarda and Krajcinovic, 1993; Voyiadjis and

Venson, 1995; Krajcinovic, 1996; Voyiadjis and Kattan, 1999; Voyiadjis and Deliktas, 2000). Damage in

materials can be represented in many forms such as specific void and crack surfaces, specific crack and void

volumes, the spacing between cracks or voids, scalar representation of damage, and general tensorial

representation of damage. In this section, however, the physical interpretation of the damage variable is

introduced as the specific damaged surface area, where two cases are considered: the isotropic damage

distribution case and the anisotropic damage distribution case of microcracks and microvoids. Moreover,
this study is limited to small strain deformations and an extension to finite strain deformations can be easily

done.
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3.1. Isotropic damage

We first consider the definition of the damage variable / in one-dimension as originally proposed by

Kachanov (1958), and further developed by several other authors (e.g. Lemaitre and Chaboche, 1990;
Lemaitre, 1992; Lubarda and Krajcinovic, 1993; Voyiadjis and Venson, 1995; Krajcinovic, 1996; Voyiadjis

and Kattan, 1999; Kattan and Voyiadjis, 2001) since the 1970s. Consider a uniform bar subjected to a

uniaxial tensile load, T , as shown in Fig. 4(a). The cross-sectional area of the bar in the stressed config-

uration is A and it is assumed that both voids and cracks appear as damage in the bar and form a total

damage area of AD. The uniaxial tensile force T acting on the bar is easily expressed using the formula

T ¼ rA. In order to use the principles of continuum damage mechanics, one considers a fictitious un-

damaged configuration (effective configuration) of the bar as shown in Fig. 4(b). In this configuration all

types of damage, including both voids and cracks, are removed from the bar. The effective stressed cross-
sectional area of the bar in this configuration is denoted by A and the effective uniaxial stress is r. The bars
in both the damaged configuration and the effective undamaged configuration are subjected to the same

tensile force, T . Therefore, considering the effective undamaged configuration, one can write T ¼ rA.
Equating the two expressions for T that are obtained from both configurations, the following expression for

the effective uniaxial stress r (Kachanov, 1958; Rabotnov, 1968) is derived such that:

r ¼ r
1� /

ð10Þ

where

/ ¼ A� A
A

¼ AD

A
ð11Þ

where AD is the specific flaws (or damaged) area (Voyiadjis and Kattan, 1999; Kattan and Voyiadjis, 2001).

Similarly, a relation between the effective stress tensor, r, and the nominal stress tensor, r, for the case of
isotropic damage (i.e. scalar damage variable) can be written as follows:

rij ¼
rij

1� /
ð12Þ

One can now derive expressions for the elastic strains and elastic moduli in the damage configuration as a

function of the isotropic damage variable /. Assume that the initiated microcracks (no microvoids are

Fig. 4. A cylindrical bar subjected to uniaxial tension: both voids and cracks are removed simultaneously (Voyiadjis and Kattan, 1999;

Kattan and Voyiadjis, 2001).
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initiated) during elastic loading are totally closed (not healed) upon elastic unloading process. Fig. 5(a)

shows a fictitious stress–strain response before plasticity occurs, where the total elastic strain (eE ¼ ee þ eed)

is recoverable. Thus, the elastic stress–strain relation can be written as:

rij ¼ Eijkleekl ð13Þ

where E is the initial elastic moduli that is constant and can be obtained experimentally.
The above equation shows that the initial elastic modulus, E, is equal to the effective elastic modulus, E,

if no damage occurs (i.e. E ¼ E for no damage case). This is true if initially the current state has no mi-

crodamage initiation. Thus, in this case the spatial configuration coincides with the effective fictitious

configuration. Alternatively, Eq. (13) can also be written as follows (Fig. 5(a)):

rij ¼ Eijklðeekl þ eedkl Þ ¼ EijkleEkl ð14Þ

where E is the elastic-damage Young�s moduli (degraded) that is no longer constant, and hence a relation

between the elastic-damage moduli E and the damage variable / is sought.

Considering the fictitious effective (undamaged) stress–strain response shown in Fig. 5(b), a similar re-

lation to Eq. (13) can be obtained such as:

rij ¼ Eijkleekl ð15Þ

where ee and E are the effective counterparts of eE and E, respectively.
In order to derive the transformation relations between the damaged and the hypothetical undamaged

(effective configuration) states of the material, the elastic energy equivalence hypothesis (Sidoroff, 1981) is

utilized. This hypothesis assumes that the elastic energy in terms of effective and nominal stress and cor-

responding strain quantities must be equal. Thus, the elastic strain energy is equated to the effective elastic

strain energy such that:

1
2
rije

E
ij ¼ 1

2
rije

e
ij ð16Þ

where eE ¼ ee þ eed is the total elastic strain recovered during unloading and ee is the effective elastic strain.

The total elastic strain energy is assumed to be a decomposition of two parts: the ordinary elastic strain

Fig. 5. Fictitious uniaxial stress–strain elastic response where all the damage strain is recoverable. (a) All damage is recoverable (all

cracks are closed but not healed), (b) effective configuration where all damage is removed.
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energy (1=2ree) and the elastic-damage strain energy (1=2reE � 1=2ree). This signifies that the stored elastic-

damage energy is needed to open the closed cracks during the elastic loading.

Substituting Eq. (12) into Eq. (16), the following relation between the effective elastic strain, ee, and the

total elastic strain, eE, is obtained as follows:

eeij ¼ ð1� /ÞeEij ð17Þ

This is analogous to the relation derived by Voyiadjis and Kattan (1992a). However, in that work the strain

eE was not explicitly decomposed into its components ee and eed.

A similar relation between the ordinary elastic strain, ee, and the effective elastic strain, ee, can be ob-

tained by substituting Eqs. (12) and (13) into Eq. (15) such that:

eeij ¼ ð1� /Þeeij ð18Þ

From the above relation it is clear that the effective elastic strain, ee, is not identical to the ordinary elastic

strain, ee, obtained through the additive strain decomposition in Eq. (7). This relation shows that the elastic

strain (excluding the damage strain) depends on the damage level, which conforms well to the experimental

observations that show the elastic strain decreases as the damage level increases, in particular, at strains

close to failure, see Fig. 6.

Furthermore, by rearranging Eq. (17) and substituting into Eq. (18) one obtains:

eeij ¼ ð1� /Þ2eEij ð19Þ

which again emphasizes the previous result, see Fig. 6. Considering the additive decomposition of the total
elastic strain, Eq. (7), into Eq. (19) and simplifying the result we obtain a relation for the elastic-damage

strain, eed, as follows:

eedij ¼ 1� ð1� /Þ2

ð1� /Þ2

" #
eeij ð20Þ

or by utilizing Eqs. (18) and (19) one obtains the following relation:

eedij ¼ 1� ð1� /Þ2

ð1� /Þ

" #
eeij ¼ ½1� ð1� /Þ2�eEij ð21Þ

This relation shows that the elastic-damage strain, eed, increases with the damage growth (Fig. 6), which

qualitatively agrees with the loading–unloading uniaxial tensile processes.

Fig. 6. Variation of the different types of elastic strain with respect to the damage variable, /. (a) With respect to the total elastic strain,

(b) the elastic-damage strain to elastic strain ratio.
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Finally, by substituting Eqs. (10) and (17) into Eq. (15) and comparing the result with Eq. (14), one

derives a relation between the elastic-damage modulus, E, and the initial elastic modulus, E, in terms of the

scalar damage variable, /, as follows:

Eijkl ¼ Eijklð1� /Þ2 ð22Þ

This coincides with the relation obtained by Voyiadjis and Kattan (1992a).

In Fig. 6(a) the variation of the strain ratios in the elastic range of Eqs. (17), (19) and (21) are plotted with

respect to the damage variable, /. In Fig. 6(b) the variation of the strain ratio in the elastic range of Eq. (20)

is plotted with respect to the damage variable, /. Fig. 6 shows a qualitatively correct behavior with respect
to the experimental observations.

It is noteworthy that if the damage variable, /, is known, one can then calculate the corresponding

damage strain and stiffness using the derived equations. Next, we will demonstrate the proposed damage

concept for the anisotropic case.

3.2. Anisotropic damage

Many researchers tend to adopt the traditional simple isotropic scalar damage variable, ‘‘(1� /)’’, in
order to model the material microdamage mechanism, in which all components of the material stiffness are

degraded by the same scalar damage parameter, / (e.g. Krajcinovic and Foneska, 1981; Krajcinovic, 1983;
Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Doghri, 2000; etc.). However, in order to

insure a more realistic application of the principles of the damage mechanics, anisotropic damage should be

assumed. In this case different levels of damage are related to the principal directions, and thus a simple

scalar damage parameter is no longer sufficient to quantify damage in all directions. Instead, the aniso-

tropic phenomenon of the microdamage distribution in the material is interpreted using a symmetric sec-

ond-order damage tensor, /ij (e.g. Murakami and Ohno, 1981; Murakami, 1983, 1988; Ortiz, 1985; Chow

and Wang, 1987, 1988; Lubarda and Krajcinovic, 1993; Voyiadjis and Abu-Lebdeh, 1993; Voyiadjis and

Kattan, 1992a,b; Voyiadjis and Venson, 1995; Voyiadjis and Park, 1997, 1999; Seweryn and Mroz, 1998;
Voyiadjis and Deliktas, 2000; etc.).

We now generalize the definition of the isotropic damage variable described above (Fig. 4) for the an-

isotropic case. Consider a damaged solid in which an RVE of finite volume has been isolated. Assume the

RVE is an elementary parallelopiped, and consider facets of outward unit normal ni ði ¼ x; y; zÞ. Each of

the three facets has a different evolution of microdamage; i.e. AD
x on the facet that has a unit normal nx, AD

y

on the facet that has a unit normal ny , and AD
z on the facet that has a unit normal nz. The total area of the

facet in the nx, ny , and nz directions are designated as Ax, Ay , Az, respectively. A measure of damage in the

RVE is then given by a second-order tensor defined as follows:

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
q 	 q

p
or /ij ¼

ffiffiffiffiffiffiffiffi
qiqj

p ð23Þ

where q is the microdamage (microcracks and microvoids) density, and defined as follows:

qi ¼
AD
i

Ai
ðno sum on iÞ ð24Þ

where AD
i ði ¼ x; y; zÞ is the total area of the defects traces on the facet whose unit normal is ni. We will see

in the subsequent sections that the definition of the strain energy release rate enables us to avoid calculation

of AD
i which would be extremely difficult to do because of the lack of knowledge of the precise geometry of

the microcracks and microvoids. A compound definition for damage was previously defined by Kattan and
Voyiadjis (2001) were both damages due to cracks and voids were superimposed. Their definition of voids

followed the concept of area reduction due to damage.
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The damage tensor / in Eq. (23) can be written in a matrix form as follows:

½/� ¼
/xx /xy /xz

/yx /yy /yz

/zx /zy /zz

2
4

3
5 ¼

qx
ffiffiffiffiffiffiffiffiffiqxqy

p ffiffiffiffiffiffiffiffiffi
qxqz

pffiffiffiffiffiffiffiffiffiqyqx
p qy

ffiffiffiffiffiffiffiffiffiqyqz
pffiffiffiffiffiffiffiffiffi

qzqx
p ffiffiffiffiffiffiffiffiffiqzqy

p qz

2
4

3
5 ð25Þ

which is a generalization of the Kachanov�s parameter that has in some simple special cases the same

meaning. In the work of Voyiadjis and Venson (1995) crack densities as a measure of microcracks only

without microvoids was considered. In a later work by Voyiadjis and Kattan (1999), and Kattan and

Voyiadjis (2001) the two types of damages were incorporated under the same variable, /. In the present

work all the defect traces that evolve on the RVE facets (i.e. microcracks and microvoids) are considered.

It is worth to say that the above definition is defined from a pure geometric point of view; that is the

larger the surface damage traces, the more severe the damage. From the material point of view, the dis-

tribution (spacing and orientation) and size of the surface damage traces have a considerable influence on
the material behavior. For example the same total damaged area can be contributed by a smaller number of

large voids/cracks or a larger number of small voids/cracks. Those effects are implicitly considered in the

evolution equations derived in the subsequent sections. This implicit consideration comes from the fact that

the proposed model follows the phenomenological approach because the material behavior is described

through a suitable set of internal variables, acting at the microstructural level, and whose relation to mi-

cromechanical processes is not exactly defined. However, an explicit consideration of such effects can be

achieved by the use of the non-local or gradient damage theories (e.g. Pijaudier-Cabot and Bazant, 1987;

Aifantis, 1992; Zbib and Aifantis, 1992; Voyiadjis et al., 2001; Taylor et al., 2002). This explicit consid-
eration of the shape, size, and distribution of microcracks and microvoids by the use of the non-local or

gradient theories can be easily adapted to the proposed model, but the matter is beyond the scopes and the

limits of the present paper.

One can write the linear elastic constitutive equations for the damaged material according to the principle

of strain energy equivalence between the virgin material and damaged material (Sidoroff, 1981). That is, the

damaged material is modeled using the constitutive laws of the effective undamaged material in which the

Cauchy stress tensor, r, is replaced by the effective stress tensor, r (Murakami and Ohno, 1981):

rij ¼ Mikjlrkl ð26Þ

where M is the fourth-order damage-effect tensor. Many different expressions for M have been proposed in

the literature in order to symmetrize the effective stress tensor, r. A comprehensive review of the most

widely used expressions are presented by Voyiadjis and Park (1997). The following expression forM , which

is proposed by Cordebois and Sidoroff (1979), is used here due to its attractiveness in the mathematical

formulations, such that:

Mikjl ¼ 2½ðdik � /ikÞdjl þ dikðdjl � /jlÞ�
�1 ð27Þ

where dij is the Kronecker delta.
Furthermore, using the strain energy equivalence principle, Eq. (17) which relates the effective elastic

strain tensor ee with the total elastic strain tensor eE can be expressed for anisotropic damage as follows:

eeij ¼ M�1
ikjle

E
kl ð28Þ

Also similar to Eq. (18), one can write:

eeij ¼ Mikjle
e
kl ð29Þ

Analogous to Eq. (22), the elastic-damage stiffness, E, can be rewritten using the fourth order damage-effect

tensor M as follows (Voyiadjis and Park, 1999):
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Eijkl ¼ M�1
imjnEmnpqM

�1
pkql ð30Þ

where

M�1
ikjl ¼ 1

2
½ðdik � /ikÞdjl þ dikðdjl � /jlÞ� ð31Þ

and E is the fourth-order elastic moduli tensor given by:

Eijkl ¼ Kdijdkl þ 2Gðdikdjl � 1
3
dijdklÞ ð32Þ

where K and G are the elastic bulk and shear moduli, respectively.
Analogous to Eq. (21) one can express eed in terms of the applied stress, r, by substituting Eqs. (13) and

(14) into Eq. (7), such that:

eedij ¼ ðE�1
ijkl � E

�1

ijklÞrkl ð33Þ

where E�1 and E
�1

are the inverse counterparts of Eqs. (30) and (32), respectively.

3.3. The strain energy release rate ðGÞ

The strain energy release rate G for the isotropic damage case is defined as the rate of change in the elastic

potential energy density W
E
with respect to the specific damaged area AD for a linear elastic material, such

that:

G ¼ � oW
E

oAD
ð34Þ

Now, we illustrate the derivation of the strain energy release rate G in one dimension. Consider an elas-

tically loaded body containing microdamages (Fig. 5). The potential energy W
E
for damage growth is given

by:

W
E ¼ U � W ð35Þ

where U is the strain energy stored in the body (reE=2) and W is the additional energy necessary for damage

growth and obtained from the work done by reE. The potential energy W
E
, therefore, can be written as

follows:

W
E ¼ �1

2
reE ð36Þ

Eq. (34) is obtained when the loading is stress controlled (the displacement is fixed). However, if the loading

is strain controlled (the load is fixed), the potential energy W
E
is given as:

W
E ¼ 1

2
reE ð37Þ

Now substitution of Eq. (37) into Eq. (34) along with eE ¼ r=E, yields the following expression:

G ¼ � 1

2

2r
E

or
oAD

	
þ r2 o

oAD

1

E


 ��
ð38Þ

The stiffness of the body E is decreasing whether the body is rigidly gripped (strain control) such that the

damage growth would result in a stress drop or whether the stress is fixed (stress control) such that the

damage growth would result in a strain increase. For the strain control case, both r and E would decrease,
but the ratio r=E would remain the same, such that:
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1

E
or
oAD

þ r
o

oAD

1

E


 �
¼ 0 ð39Þ

using the above equation with Eq. (38), the following expression is obtained for G, such that:

G ¼ 1

2
r2 o

oAD

1

E


 �
ð40Þ

In the case of stress control or strain control loading, the magnitude of W
E
is equivalent as given by

Eqs. (36) and (37). Thus, under fixed stress loading condition the strain energy release rate is the same as

given by Eq. (40), only the sign is reversed, reflecting the fact the G is independent of the type of load

application (e.g. displacement control, load control, combinations of stress change and strain change).

We found for the case of isotropic damage (Eq. (22)) that E for one-dimension can be expressed in terms

of the undamaged stiffness E and the damage variable / as follows:

E ¼ Eð1� /Þ2 ð41Þ

with / ¼ AD=A is given by Eq. (11).

Substitution of Eq. (41) into Eq. (40), yields the following expression for the energy release rate G:

G ¼ r2

AEð1� /Þ3
ð42Þ

By substituting the nominal stress r from Eq. (10) along with the elastic strain energy equivalence principle

(Eq. (16)), the strain energy release rate G can be written as a function of the energy potential and the

damage variable as follows:

G ¼ 2W
E

Að1� /Þ ð43Þ

The strain energy release rate for the anisotropic damage can be defined as follows:

Gij ¼ � oW
E

oAD
ij

ð44Þ

where AD
ij ¼ AD

i A
D
j as defined in Eq. (23).

Similar to the procedure outlined above, one can derive the strain energy release rate for the anisotropic

damage case (G) with the aid of the definition presented by Eqs. (23), (30) and (31). Assuming that the total

area of the RVE�s facets in the nx, ny , and nz normals are constant, one can write G as follows:

Gij ¼ 2W
E
Mkplq

oM�1
kplq

o/ab

o/ab

oAD
ij

ð45Þ

Using Eq. (27), one can write:

oM�1
kplq

o/ab
¼ �Jkplqab ð46Þ

where J is a sixth-order tensor and is given by:

Jkplqab ¼ 1
2

dlqdkadpb



þ dkpdladqb
�

ð47Þ

Hence, Eq. (45) can be written as:
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Gij ¼ �2W
E
MkplqJkplqab

o/ab

oAD
ij

ð48Þ

where W
E
is given by:

W
E ¼ 1

2
rijE

�1

ijklrkl ¼ 1
2
rijE�1

ijklrkl ð49Þ

It is noteworthy that since the magnitude of W
E
is path independent as was shown in the beginning of this

section, the expression of G does not differ whether the imposed loading is strain control or stress control.

This particularly agrees well with the definition of strain energy release rate made in fracture mechanics

(Thomason, 1990; Anderson, 1994; Hertzberg, 1996). However, this does not imply that the strain energy

release rate, presented in Eq. (43) for isotropic damage or Eq. (48) for anisotropic damage, is path inde-

pendent. The expression for the strain energy release rate, which is used later to define the conjugate

damage force, has in its composition the damage variable / which is path dependent. This makes both the
strain energy release rate and the damage conjugate force path dependent.

4. Coupled damage/plasticity thermodynamic formulation

4.1. Helmholtz free energy density

In this work, the elasto-plastic-damage material behavior is considered. This implies that stress path

material dependence and the non-linear material response are considered. Thus, the dependent constitutive

variables are functions of the total elastic strain tensor, eE, and nint- of internal state variables,

@k ðk ¼ 1; . . . ; nint; nint P 1Þ. Within the thermodynamic framework, the Helmholtz free energy density can

be written as:

W ¼ WðeEij;@kÞ ð50Þ

Since the main objective is to develop strong-coupled constitutive equations for a plastic-damaged

material, the effects of plastic strain hardening and microdamage mechanisms are to be considered. Ex-

perimental observations show that the accumulation of the material defects during the deformation process

has a tendency to form macroscopically localized deformation regions. In those localized zones, many of
defects may undergo irreversible growth; coalescence of pre-existing cracks and voids may occur; propa-

gation of dislocations may proceed; and new defects may nucleate and their ultimate coalescence results in

failure. Moreover, intensive interaction mechanisms of the evolved defects may take place at those localized

zones; such as dislocation–dislocation interaction, microdamage–microdamage interaction, crack domi-

nated–dislocation interaction, dislocation dominated–crack interaction, dislocation/crack–grain boundary

interaction, etc. In order to consider such mechanisms in the constitutive equations, a finite set of internal

state variables @k, acting at the microstructural level, representing either a scalar or a tensorial variable are

assumed such that (Voyiadjis and Deliktas, 2000):

@k ¼ @kðaij; p;Cij; r;/ijÞ ð51Þ

where a is the plastic flux variable related to the kinematic hardening (movement of the loading surface), p
is the equivalent plastic strain related to the isotropic hardening (size of the loading surface). Furthermore,

since this work focuses on the development of a coupled plastic-damage framework based on the ther-

momechanical postulates, the various possibilities to describe anisotropic damage are to be presented here.

The damage internal variables consist of the damage flux variable C corresponding to the kinematic
hardening (movement of the damage surface), r the cumulative inelastic-damage strain (size of the damage

surface), and / the anisotropic damage tensor. p and r can be expressed as follows:
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p ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
_eepij _ee

p
ij

r
dt ð52Þ

r ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffi
_eeidij _ee

id
ij

q
dt ð53Þ

Using the Clausius–Duhem inequality for isothermal state, one obtains:

rij _eeij � q _ww P 0 ð54Þ
where q denotes the mass density. In Eq. (54) the total strain rate tensor, _ee, is decomposed into two parts:

total elastic part, _eeE ¼ _eee þ _eeed and inelastic part, _eeI ¼ _eep þ _eeid.
The time derivative of Eq. (50) with the respect to its internal state variables, @k, is given by:

_WW ¼ oW
oeEij

_eeEij þ
oW
oaij

_aaij þ
oW
op

_pp þ oW
oCij

_CCij þ
oW
or

_rr þ oW
o/ij

_//ij ð55Þ

Substituting the rate of the Helmholtz free energy density, Eq. (55), into the Clausius–Duhem inequality,

Eq. (54), along with Eq. (5), one obtains the following thermodynamic constraint:

rij

 
� q

oW
oeEij

!
_eeEij þ rij _ee

I
ij � q

oW
oaij

_aaij � q
oW
op

_pp � q
oW
oCij

_CCij � q
oW
or

_rr � q
oW
o/ij

_//ij P 0 ð56Þ

Eq. (56) results in the following thermodynamic state laws for the conjugate thermodynamic forces:

rij ¼ q
oW
oeEij

ð57Þ

Xij ¼ q
oW
oaij

ð58Þ

R ¼ q
oW
op

ð59Þ

Hij ¼ q
oW
oCij

ð60Þ

K ¼ q
oW
or

ð61Þ

�Yij ¼ q
oW
o/ij

ð62Þ

where X , R, H , K, and �Y are the thermodynamic forces conjugate to the fluxes a, p, C, r, and /, re-

spectively.

The complexity of a model is directly determined by the form of the Helmholtz free energy W and by the

number of conjugate pairs of variables. The specific free energy, W, on the long-term manifold (neglecting
the short-term manifolds) is assumed as follows:

qW ¼ 1

2
eEijEijklð/ÞeEkl þ

1

3
Caijaij þ Q p



þ 1

b
e�bp

�
þ 1

2
aCijCij þ q r



þ 1

c
e�cr
�

ð63Þ
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where Eð/Þ is the fourth-order damage elastic tensor and C, Q, b, a, and c are material-dependent con-

stants.

The form of the first term in Eq. (63) has been often postulated in damage mechanics, and is based on the

concept of the effective stress r so that it presents the same strain or the same elastic energy as a damaged
element subjected to the nominal stress r. The rest of the terms in Eq. (63) have been assumed in this form

in order to derive non-linear evolution equations for the isotropic and kinematic hardening that describe

more accurately the plasticity and damage deformation mechanisms. Where the second and third terms

take a form as proposed by Chaboche (1989). The forth and fifth terms are assumed analogous to the

second and third terms, respectively for the case of damage.

The proposed definition of W allows the derivation of the constitutive equations and the internal dissi-

pation described next. The state laws of the assumed internal state variables are obtained by substituting

Eq. (63) into Eqs. (57)–(61), such that:

rij ¼ Eijklðekl � epkl � eidklÞ ð64Þ

Xij ¼ 2
3
Caij ð65Þ

R ¼ Qð1� e�bpÞ ð66Þ

Hij ¼ aCij ð67Þ

K ¼ qð1� e�crÞ ð68Þ

Now, one can obtain an expression for the damage driving force Y in terms of the strain energy release rate

presented in Eq. (45). By using the chain rule, the thermodynamic state law of Y (Eq. (62)) can be written
as follows:

Yij ¼ �q
oWE

oAD
mn

oAD
mn

o/ij
ð69Þ

Using the definition of strain energy release rate for anisotropic damage (Eq. (44)) and the physical defi-

nition of the damage tensor / (Eqs. (23) and (24)) along with the assumption of A designating the total area

of the RVE�s facets in the nx, ny , and nz directions, one can write Eq. (69) in terms of the strain release rate,
G, as follows:

Yij ¼ Gmn
oAD

mn

o/ij
ð70Þ

Substituting the expression derived for the strain energy release rate for anisotropic damage G (Eq. (48))

into Eq. (70), one can express the damage driving force Y as follows:

Yij ¼ 2W
E
MkplqJkplqij ð71Þ

where W
E
and J are given by Eqs. (47) and (49), respectively. Furthermore, we may replace W

E ¼ r : ee=2 by
its expression in terms of equivalent stress req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
and the hydrostatic stress P ¼ tracðrÞ=3 as

follows:

W
E ¼

r2
eq

6G
þ 9P

2

2K
ð72Þ

where K ¼ 3E=ð1� 2mÞ, G ¼ E=2ð1þ mÞ, and m is the Poisson�s ratio. For the isotropic damage case we may

write an expression for Y as follows:
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Y ¼ r�2

Eð1� /Þ
¼ r�2

Eð1� /Þ ð73Þ

with

r� ¼ req½23ð1þ mÞ þ 3ð1� 2mÞðP=reqÞ2�1=2 ð74Þ

where r� ¼ ð1� /Þr�. This is referred to as the equivalent damage stress according to the notation by

Lemaitre and Chaboche (1990). The ratio P=req expresses the triaxiality of the state of stress.

4.2. The dissipation function and the maximum dissipation principle

Using the equations of state (Eqs. (57)–(62)), the Clausius–Duhem inequality expression (Eq. (56)) be-

comes:

P ¼ rijð _eepij þ _eeidij Þ � Xij _aaij � R _pp � Hij
_CCij � K _rr þ Yij _//ij P 0 ð75Þ

where P defines the dissipation due to plasticity and damage morphologies and requires to be non-negative.

It can be seen from the dissipation function P that both irreversible and reversible damage strains cause

energy dissipation. The irreversible strains through r : _eeid and the reversible strains through Y : _//.
The rate of the internal state variables associated with plastic and damage deformations are obtained by

utilizing the calculus of functions of several variables with the Lagrange multipliers _kkp and _kkd, respectively.

The dissipation function P (Eq. (75)) is subjected to the two constraints, namely f ¼ 0 and g ¼ 0 (Voyiadjis
and Kattan, 1992a), such that:

X ¼ P � _kkpf � _kkdg ð76Þ
One now can make use of the maximum dissipation principle (Simo and Honein, 1990; Simo and

Hughes, 1998), which states that the actual state of the thermodynamic forces (r, Y ) is that which max-

imizes the dissipation function over all other possible admissible states. Thus, we maximize the objective

function X by using the necessary conditions as follows:

oX
orij

¼ 0 and
oX
oYij

¼ 0 ð77Þ

Substitution of Eq. (76) into Eq. (77) along with Eq. (75) yields the thermodynamic laws corresponding to

the evolution of the total inelastic strain rate (eI) and the damage variable (/), where Eq. (77)1 gives the

inelastic strain rate as follows:

_eeIij ¼ _kkp of
orij

þ _kkd og
orij

ð78Þ

Considering the earlier postulate of the additive decomposition of the inelastic strain rate into plastic and

damage parts, Eq. (8), the following assumption is made:

_eepij ¼ _kkp of
orij

and _eeidij ¼ _kkd og
orij

ð79Þ

This assumption suggests that the inelastic-damage strains, eid, may be anticipated even before any plastic

deformation can be observed, which qualitatively meets the discussion outlined in Section 2.

On the other hand, Eq. (77)2 gives the damage rate evolution law as follows:

_//ij ¼ _kkp of
oYij

þ _kkd og
oYij

ð80Þ
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Eq. (80) signifies, once again, that the damage growth occurs even if there is no plastic flow (i.e. _kkp ¼ 0),

which agrees well with the experimental observations in brittle materials and justified in Fig. 5.

In order to obtain non-associative rules for the damage and plasticity hardening variables, one can as-

sume the existence of a plastic potential F and a damage potential G such that they are respectively not
equal to f and g. This postulate is essential in order to obtain non-linear plastic and damage hardening

rules, which give a more realistic characterization of the material response in the deformation process. The

complementary laws for the evolution of the other internal state variables can then be obtained directly

from the generalized normality rule, such that:

_aaij ¼ � _kkp oF
oXij

ð81Þ

_pp ¼ � _kkp oF
oR

ð82Þ

_CCij ¼ � _kkd oG
oHij

ð83Þ

_rr ¼ � _kkd oG
oK

ð84Þ

where _kkp and _kkd are determined using the consistency conditions _ff ¼ 0 and _gg ¼ 0, respectively.

The next step is the selection of the appropriate form of the plastic potential function F , the plastic yield
surface f , the damage potential function G, and the damage growth surface g in order to establish the

desired constitutive equations that describe the mechanical behavior of the material.

4.3. Plasticity and damage dissipation potentials and hardening rules

4.3.1. Plastic dissipation potential and hardening rules

Once a material is damaged, further loading can only affect the undamaged material. Thus, the damage

potential function G is defined in terms of the effective stresses and strains. By combining plasticity with
damage, it seems natural that plasticity can only affect the undamaged material skeleton. Thus plastic

potential F is also defined in terms of the effective stresses and strains. The plastic potential F is defined as:

F ¼ f þ 3

4

c
C
X ijX ij ð85Þ

where c and C are material constants used to adjust the units of the equation. f is of a von Mises type given
as follows:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsij � X ijÞðsij � X ijÞ

r
� ryp � RðpÞ ¼ 0 ð86Þ

where ryp is the initial size of the yield surface, and s and X are expressed in terms of the damage tensor M
(given by Eq. (27)) and the corresponding damage states as follows (Voyiadjis and Kattan, 1999):

sij ¼ M 0
ikjlrkl where M 0

ikjl ¼ Mikjl � 1
3
Mrkrldij ð87Þ

and

X ij ¼ MikjlXkl ð88Þ
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The plastic parameter _kkp P 0, which is known as the plastic consistency parameter, is assumed to obey the

following Kuhn–Tucker loading/unloading conditions:

f 6 0 and _ff
< 0 ) _kkp ¼ 0
¼ 0 ) _kkp ¼ 0

¼ 0 ) _kkp > 0

8<
:

9=
;()

elastic unloading

neutral loading

plastic loading

8<
: ð89Þ

In order to derive the evolution of the plasticity isotropic hardening function, the time rate of Eq. (66) gives:

_RR ¼ bQ _ppe�bp ð90Þ

A relation between R and p can be obtained from Eq. (66), such that:

p ¼ � 1

b
ln 1



� R
Q

�
ð91Þ

which upon substituting it into Eq. (90) yields the following expression for _RR, such that:

_RR ¼ b½Q� R� _pp ð92Þ

The isotropic hardening represents a global expansion in the size of the yield surface with no change in

shape. Thus for a given yield criterion and flow rule, isotropic hardening in any process can be predicted
from the knowledge of the function R, and this function may in principle, be determined from a single test

(e.g. the tension test). Therefore, the effective isotropic hardening function R is related to the nominal

isotropic hardening function by Eq. (10) as follows:

R ¼ R
1� /eq

ð93Þ

where (Voyiadjis and Park, 1997)

/eq ¼
ffiffiffiffiffiffiffiffiffiffiffi
/ij/ij

q
ð94Þ

Using Eq. (82) along with the chain rule and Eqs. (86) and (93), it can be easily shown that _pp is related to _kkp

by:

_kkp ¼ ð1� /eqÞ _pp ð95Þ

Using the chain rule and Eq. (88), Eq. (81) is now expressed as follows:

_aaij ¼ � _kkpMminj
oF

oXmn
ð96Þ

Substitution of Eq. (85) into the above equation yields:

_aaij ¼ � _kkpMminj
of

oXmn



þ 3

2

c
C
Xmn

�
ð97Þ

since of =oX ¼ �of =or as it is clear from Eq. (86), it is easily shown with using the chain rule and Eqs. (26),

(79)1, (88) together with the time rate of Eq. (65) that the evolution equation of the plastic kinematic

hardening _XX is related to _eep, X , and M as follows:

_XXij ¼ 2
3
C _eepij � c _kkpMminjMmrnsXrs ð98Þ

Substituting Eq. (95) into the above equation, gives the following form for the evolution equation of the
backstress tensor _XX , such that:
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_XXij ¼ 2
3
C _eepij � cð1� /eqÞMminjMmrnsXrs _pp ð99Þ

4.3.2. Damage dissipation potential and hardening rules

The anisotropic damage governing equations are formulated in spirit of plasticity. Thus, analogous to the

plasticity potential function F , one can assume the following form of the damage potential function G in the

space of the damage forces and the conjugated forces of the hardening variables (Voyiadjis and Deliktas,

2000):

G ¼ g þ 1

2

d
a
HijHij ð100Þ

where d and a are material constants used to adjust the units of the equation. g is the damage growth

function postulated as follows:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYij � HijÞðYij � HijÞ

q
� ld � KðrÞ ¼ 0 ð101Þ

where ld is the initial damage threshold. The damage consistency parameter _kkd P 0 is assumed to obey the

following Kuhn–Tucker conditions:

g6 0 and _gg
< 0 ) _kkd ¼ 0

¼ 0 ) _kkd ¼ 0

¼ 0 ) _kkd > 0

8<
:

9=
;()

undamaged state

damage initiation

damage growth

8<
: ð102Þ

Using Eq. (84) along with Eq. (101), the following relation is obtained:

_kkd ¼ _rr ð103Þ
Taking the time rate of Eq. (68) and expressing r in terms of K, the evolution of the damage isotropic

hardening function K can be easily written as:

_KK ¼ cðq� KÞ_rr ð104Þ
Now, one can derive an expression for the damage kinematic hardening rule by taking the time rate of Eq.

(67) and making use of Eqs. (80), (83), (100) and (103) such that:

_HHij ¼ a
og
oYij



� dHij

�
_rr ð105Þ

Next, explicit expressions for the plasticity and damage Lagrange parameters _kkp and _kkd are derived using

the consistency conditions _ff and _gg, respectively.

4.4. Plasticity and damage consistency conditions

Since r, X , and R are functions of / and their corresponding nominal counter parts r, X , and R, it
follows that the yield function f may be expressed as a function /, such that the corresponding consistency

condition _ff ¼ 0 can be written as follows:

_ff � of
orij

_rrij þ
of
oXij

_XXij þ
of
oR

_RRþ of
o/ij

_//ij ¼ 0 ð106Þ

By assuming that the elastic-damage stiffness, E, is constant within each stress/strain increment, which is the

case in the strain-driven problem, one can write the time rate of the Cauchy stress tensor ( _rr) as follows:

_rrij ¼ Eijkl _eeEkl ð107Þ
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Making use of the above equation, Eqs. (78), (80), (86), (92), (93), (95), (99), and the chain rule with

noticing that of =oX ¼ �of =or, it can be shown, after some manipulation, that the consistency condition,

Eq. (106), gives the following relation between _kkp and _kkd, such that:

a11 _kk
p þ a12 _kk

d ¼ b1 ð108Þ

where

a11 ¼
of
orij

Eijkl
of
orkl

þ 2

3
C

of
orij

of
orij

� c
of
orij

MminjMmrnsXrs �
of
o/ij

of
oYij

þ bðQ� RÞ
ð1� /eqÞ

2
ð109Þ

a12 ¼
of
orij

Eijkl
og
orkl

� of
o/ij

og
oYij

ð110Þ

and

b1 ¼
of
orij

Eijkl _eekl ð111Þ

On the other hand, the consistency condition for the damage, _gg ¼ 0, can be written as follows:

_gg � og
oYij

_YYij þ
og
oHij

_HHij þ
og
oK

_KK ¼ 0 ð112Þ

However, since the damage driving force Y is a function of r and / (see Eq. (71)), the damage consistency

condition can be rewritten as follows:

_gg � og
orij

_rrij þ
og
oHij

_HHij þ
og
oK

_KK þ og
o/ij

_//ij ¼ 0 ð113Þ

Making use of Eqs. (78), (80), (101) and (103)–(105) along with the chain rule, it can be shown, after some

manipulation, that the consistency condition, Eq. (113), gives the following relation between _kkp and _kkd, such

that:

a21 _kk
p þ a22 _kk

d ¼ b2 ð114Þ
where

a21 ¼
og
orij

Eijkl
of
orkl

� og
o/ij

of
oYij

ð115Þ

a22 ¼
og
orij

Eijkl
og
orkl

� d
og
oYij

Hij �
og
o/ij

og
oYij

þ cðq� KÞ þ a ð116Þ

and

b2 ¼
og
orij

Eijkl _eekl ð117Þ

The plastic multiplier, _kkp, and the damage multiplier, _kkd, can be found from the linear system of equations

given by Eqs. (108) and (114) such that:

_kkp

_kkd

� �
¼ 1

D
a22 �a12
�a21 a11

	 �
b1
b2

� �
ð118Þ
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where

D ¼ a11a22 � a12a21 ð119Þ

4.5. The elasto-plastic-damage tangent stiffness

Substituting _kkp and _kkd from Eq. (118) into Eq. (78), the evolution equation for the inelastic strain rate _eeI

can be written in the following form:

_eeIij ¼ vijkl _eekl ð120Þ

where v is a fourth-order tensor and is expressed as follows:

vijkl ¼ Pijkl þ Zijkl ð121Þ

where

Pijkl ¼
of
orij

ArsErskl ð122Þ

Zijkl ¼
og
orij

BrsErskl ð123Þ

Ars ¼
1

D
a22

of
orrs

	
� a12

og
orrs

�
ð124Þ

Brs ¼
1

D
a11

og
orrs

	
� a21

of
orrs

�
ð125Þ

Substitution of Eqs. (120) and (33) into Eq. (107), yields the following:

_rrij ¼ Dijkl _eekl ð126Þ

where D represents the elasto-plastic-damage tangent stiffness given by:

Dijkl ¼ Eijkl � Eijmnvmnkl ð127Þ

The tangent stiffness D has two possible expressions, such that:

Dijkl ¼
Eijkl; if f < 0 or _ff < 0 and g < 0 or _gg < 0

Eijkl � Eijmnvmnkl if f ¼ 0 () _kkp _ff ¼ 0 or g ¼ 0 () _kkd _gg ¼ 0

(
ð128Þ

The above expression signifies that D ¼ E if there is no damage and no plastic flow; and D ¼ E if there is

total crack closure, total void contraction, and no plastic flow.

For the sake of completeness we outline in Appendix A the derivatives that are necessary to calculate the

above evolution equations.

5. Qualitative and quantitative results

The pure damage and the coupled plastic-damage model behavior are examined in the sequel for the case
of isotropic damage. The new features that the proposed model is attempting to represent are illustrated by

providing qualitative and quantitative plots of stress versus strain.
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5.1. The case of pure isotropic damage

In this section some properties of the damage model proposed in Section 4.3.2 are investigated for some

simple uniaxial processes using a dissipation mechanism produced by the damage potential only. The
damage criterion with linear isotropic damage hardening is considered such that Eq. (101) can be expressed

as follows:

g ¼ Eð1� /Þ3

ð1þ /Þ2
e2 � ld � q/ ¼ 0 ð129Þ

where e ¼ ee þ eed þ eid is the total strain, ld is the damage threshold, and q is the damage hardening

modulus. The evolution of the damage variable / in uniaxial extension can be obtained from Eq. (129) for a

given e, ld, and q. The limit uniaxial strain and stress at which damage initiates are obtained by setting
/ ¼ 0 in Eq. (129) such that:

e0 ¼
ffiffiffiffiffiffiffiffiffiffi
ld=E

q
; r0 ¼

ffiffiffiffiffiffiffi
Eld

q
ð130Þ

The elastic strain, ee, the elastic-damage strain, eed, and the inelastic-damage strain, eid, can be obtained
from the relations presented in Section 3.1 and Eq. (79)2 such that:

ee ¼ ð1� /Þ3

ð1þ /Þ e; eed ¼ ð1� /Þ � ð1� /Þ3

ð1þ /Þ e; eid ¼ 2/
1þ /

e ð131Þ

For / ¼ 0, ee ¼ e and eed ¼ eid ¼ 0. The stress relation follows from the elastic constitutive relation:

r ¼ Dsece with Dsec ¼
ð1� /Þ3

ð1þ /Þ E ð132Þ

The stress–strain curves are shown in Fig. 7 for different values of the damage threshold ld and the damage

hardening modulus q. It is evident that the model allows simulating a continuous change from hardening to
softening as well as the reduction in the stiffness. It is noteworthy that the energy necessary to initiate the

damaged state (that can be interpreted as fracture energy Gf ) is finite, in fact:

Gf ¼
Z e0

0

rde ¼ 1

2
Ee20 ¼

1

2
ld ð133Þ

Therefore, for q ¼ 0, Eq. (129) characterizes a fracture-type criterion. Moreover, it can be noted from

Fig. 7(b) that for q ¼ 0 (i.e. no damage hardening), for each / there is a unique value of stress; while for

q 6¼ 0 (i.e. with damage hardening), for each / there are two possible stress values. Therefore, due to the

Fig. 7. Influence of the (a) ld parameter and (b) q (Mpa) parameter for E ¼ 199 GPa.
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presence of damage the application of this model to structural problems will cause strain localization with

the consequent mesh-dependency of the numerical results. Several regularization approaches, either in time

or space, have been proposed in the literature to accommodate this problem (see Voyiadjis et al., 2001).

However, the purpose of this study is to introduce the model and the possible strategies for coping with
strain localization are beyond the goal of the present work.

The loading–unloading behavior is considered in Fig. 8(a). When damage occurs, it can be seen upon

unloading that there is a permanent strain in the stress free state. This qualitatively agrees with the ex-

perimental observations in concrete (Van Mier, 1984), where plasticity is assumed to be negligible. The

stress–strain plot in Fig. 8(a) with damage hardening is obtained for very large value of q ¼ 50 MPa so that

the secant stiffness, Dsec, after first damage does not degrade immediately, as it has been observed in some

experimental tests on concrete. Hardening then decreases fast as soon as damage localization develops.

Fig. 8(b) shows the variation of the different coupled-damage strains with respect to the damage variable /.
Fig. 8 shows an important feature of the proposed damage model that has not been considered by most of

the previous models. Furthermore, it can be seen that for the same corresponding imposed strain, the

elastic-damage modulus is bigger for pure damage with hardening than without hardening. This implies an

increase in the material strength due to interaction between microdamages. This is also a new aspect was

not provided by many of the previous damage models.

The influence of the hardening modulus q is shown in Fig. 9 for ld ¼ 3:0 MPa and E ¼ 199 GPa. The

evolution of / and the elastic-damaged modulus E are also reported. Increasing values of q determine

stronger reduction in / and stronger increase in E. The parameter q particularly influence the degradation

Fig. 8. Damage hardening effect. (a) Loading–unloading uniaxial tensile process, (b) variation of different type of strains with damage,

for E ¼ 199 GPa and ld ¼ 3 MPa.

Fig. 9. (a), (b) Influence of q (MPa) parameter for E ¼ 199 GPa and ld ¼ 3 MPa.
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of the elastic modulus and the concavity of the stress–strain curve Eð/Þ that can be obtained from ex-

periments (Fig. 9).

5.2. Coupled plasticity and damage––application to high strength steel

In this section the experimental results of Hesebeck (2001) for a high strength steel are numerically

simulated using the proposed model. The tested high strength steel 30CrNiMo8 contains 33% carbon.

Further details of the chemical composition are documented in Hesebeck (2001). In the mechanical

experiments, force controlled tension tests with partial unloadings were performed at a stress rate
_rr ¼ 30 MPa/s�1. The resulting stress versus strain curve obtained by Hesebeck (2001) is plotted in Fig. 10.

Considering the fact that there are no unified experimental methods developed to quantify the damage

variable, one can obtain / with sufficient precision by evaluating the unloading (i.e. the decrease in the

stiffness) in the stress–strain curve, such that one can write from Eq. (22) the following expression:

/ ¼ 1�
ffiffiffiffi
E

E

r
ð134Þ

Voyiadjis and Venson (1995) advocated the use of the sectioned specimens together with the use of the

SEM for the determination of crack densities. However, different interpretation of the experimental damage

variable have been made by Hesebeck (2001), which is based on the strain equivalence principle (i.e.

E ¼ Eð1� /Þ). However, the strain energy equivalence is considered in the present work. The result for the

damage variable using Eq. (134) is plotted in Fig. 11 versus the elastic-damage modulus, E.
Identification of the material constants associated with any proposed material model is one of the most

challenging issues for researchers in order to obtain better representation of their material models. The

identification approach of the material constants for the evolution equations outlined in the previous

sections is based on the experimental results in Figs. 10–12 by using the least-squares minimization method.

Young�s modulus, Poisson�s ratio, and the initial flow stress were pre-determined by Hesebeck (2001) as

E ¼ 199 GPa, m ¼ 0:3, and ryp ¼ 870 MPa, respectively. The object of the identification process here is to

Fig. 10. Stress-strain diagram for damaged and effective undamaged 30CrNiMo8-steel as compared to the experimental data.
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identify the four parameters (Q, b, C, c) of Eqs. (92) and (99), characterizing the plastic isotropic and ki-
nematic hardening, and the five parameters (ld, q, c, d, a) of Eqs. (101), (104) and (105), characterizing the

initial damage threshold, and damage isotropic and kinematic hardening. The plasticity hardening pa-

rameters are determined using the effective stress-effective plastic strain curve in Fig. 10, while the damage

Fig. 11. Elastic-damage modulus (E) versus damage variable (/).

Fig. 12. Comparison of experiments by Hesebeck (2001) with the simulated data of the present work for the damage variable versus the

inelastic strain.
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parameters are determined using all the experimental data in Figs. 10–12. The obtained material parameters
are listed in Table 1.

Preliminary results not reported here revealed that the effective stress-effective plastic strain curve could

be obtained with reasonable agreement with the experimental data by considering only the isotropic

hardening evolution, but by using different material parameters than those listed in Table 1. Nevertheless

this is not a problem for the practical applicability of the developed model. The emphasis of this work is to

understand better the different deformation morphologies that affect the material behavior by considering

their synergetic effects. Therefore, the influence of the different cooperative phenomena on plasticity and

damage growth are discussed here. The curves plotted in Figs. 13–15 represent the synergetic effects of the
combined isotropic and kinematic hardening associated with plasticity, combined isotropic and kinematic

hardening associated with damage, and damage mechanisms.

Fig. 10 depicts the resulting effective stress versus the effective plastic strain curve of the proposed model,

thus revealing a very good agreement with the experimental data. Also, the true stress (r ¼ ð1� /Þr) versus
the inelastic strain (eI ¼ ep=ð1� /Þ) curve is shown in Fig. 10. The results of the present work for the

damage variable (/) versus the inelastic strain (eI) are shown in Fig. 12 while considering the experimental

calculation of the damage variable and using both the strain equivalence and the strain energy equivalence

principles. Also for this type of data it becomes apparent that the proposed model is able to give a good
agreement with the experimental data for the material under consideration. High non-linear dependency

between / and eI is noticed in Fig. 10, which agrees well with the experimental observations.

Table 1

The plasticity and damage material parameters for 30CrNiMo8 high strength steel

Mechanism Isotropic hardening Kinematic hardening Initial flow threshold

Plasticity Q¼ 409 MPa b¼ 9.3 C¼ 15,000 MPa c¼ 37 ryp ¼ 870 MPa

Damage q¼ 8.2 MPa c¼ 5.2 a¼ 14.70 MPa d ¼ 0.11 ld ¼ 3.8 MPa

Fig. 13. Evolution of the plasticity dissipative forces using the present model.

2638 R.K. Abu Al-Rub, G.Z. Voyiadjis / International Journal of Solids and Structures 40 (2003) 2611–2643



The evolution of the plasticity dissipative forces R and X , and the damage dissipative forces K, H , and Y
are shown in Figs. 13 and 14, respectively. Closed form expressions have been derived for the plasticity and

damage hardening forces by integrating Eqs. (92), (99), (104) and (105) over the uniaxial tensile stress–

strain data. The damage force Y is simplified for the one-dimensional case by using Eq. (71).

The calculated additive decomposition of the total elastic strain (eE) into the ordinary elastic strain (ee)
and the elastic-damage strain (eed) as a function of / is shown in Fig. 15(a). In addition, the calculated

additive decomposition of the total inelastic strain (eI) into the plastic strain (ep) and the inelastic-damage

strain (eid) as a function of / is shown in Fig. 15(b). Fig. 15 shows qualitatively correct behavior as an-
ticipated in the discussion outlined in Section 2.

Although this study is restricted to small strains, usually up to 2–4%, the results in Figs. 10–15 are ex-

tended to inelastic strains up to 6%. However, the proposed model is in reasonable quantitative agreement

with the experimental data for uniaxial loading and exhibits a qualitatively correct behavior for the

Fig. 14. Evolution of the damage dissipative forces using the present model.

Fig. 15. Variation of the strain decomposition with the damage variable. (a) Elastic strain decomposition, (b) inelastic strain de-

composition.
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evolution of the different strain types. Moreover, one will find in the literature considerable fewer published

experimental results for multi-axial loadings. In this work uniaxial tension experimental data with un-

loadings are used to obtain the constitutive parameters of the proposed model. The reduction in the elastic

stiffness, particularly, has been measured from the uniaxial case. Therefore, the present model, for the time
being, cannot be tested for more general paths. This will presented in a forthcoming paper.

6. Conclusions

In the current paper the systematic construction of a thermodynamic consistent model for ductile ma-

terials, which provides a strong coupling between plasticity and damage, is presented. The model considers

the different interaction mechanisms exhibited by the plasticity and the damage morphologies. Plasticity

and damage combined isotropic and kinematic hardening are considered. In addition, an additive de-

composition of the total strain into elastic, plastic, and damage parts is proposed in this work. The damage

component is further decomposed into two parts, one is due to the crack closure and void contraction and
the other is due to the lack of crack closure and void contraction. The later may be attributed to the

geometrical constraints set up by the interacting microcracks, microvoids, dislocation densities, and grain

boundaries. Although microstructural arguments are used to motivate many aspects of the formulation, the

fact remains that the formulation is phenomenological. The material behavior is described through a

suitable set of internal variables and whose relation to micromechanical structure and processes is not

exactly defined.

A strong coupling between the two dissipative processes, plasticity and damage, is implemented. This

strong coupling have been assessed by using two separate plasticity and damage surfaces with separate non-
associated flow rules in such a way that both damage and inelastic flow rules are dependent on the plastic

and damage potentials. Two damage mechanisms have been considered, one mechanism is coupled with

plasticity, and while the other one occurs independent of plastic deformation. The dissipation function of

the latter occurs in both the elastic and plastic domains.

Some of the new features of the proposed damage model that are not reflected in the current models are

investigated for some simple uniaxial tensile processes. Moreover, uniaxial tension tests by Hesebeck (2001)

with unloadings for a high strength steel have been used to investigate the coupled plastic-damage behavior.

The proposed model is in a very good quantitative agreement with the experimental data for uniaxial
loading and exhibits a qualitatively correct behavior for the evolution of the different strain types. However,

even though the verification is based on limited set of data, namely that of uniaxial stress and strain, this

could specifically motivate experimentalists to look for the new features that would provide justification for

the approach used in the current study.

The effects of crack closure and void contraction are considered in this work upon unloading. However,

those effects under compressive loading are not considered in this work, which will be the focus of a

forthcoming paper. In addition, explicit treatment of the microdamage distribution (spacing and orienta-

tion) and size, which have a considerable influence on the interaction between defects, will be addressed in a
future work by the authors.

Future work should be directed for implementation of the proposed model in a finite deformation

framework to model problems that exhibit non-homogenous deformation. In addition it will also be used to

investigate the necessity of the proposed additive decomposition of the total strain into elastic, plastic, and

damage parts. These additional investigations should be based on the results of micromechanical charac-

terization of the materials that exhibit heterogenous behavior and on the experimental evidence obtained in

the laboratory accompained by metallographic studies and stereology based quantification methods using

tomography images. Additional aspects for future work is the consideration of the different behavior in
tension and compression for damage. Moreover, the problem of size effect, strain localization, and mesh
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dependency, typical of damage evolution, has not been addressed in this paper. Some of these aspects are

presented in Voyiadjis et al. (2003), Voyiadjis and Abu Al-Rub (accepted for publication) in the framework

of the proposed formulation and the non-local damage theories.

Appendix A

The following relations are necessary for the model implementation:

of
o/ij

� of
ormn

ormn
o/ij

þ of
oXmn

oXmn
o/ij

þ of
oR

oR
o/ij

¼ Mmrns
of
orrs

JmpnqijMpkqlðrkl � XklÞ þ
/ij

ð1� /eqÞ
2
R ðA:1Þ

og
o/ij

� og
oYmn

oYmn
o/ij

þ og
oHmn

oHmn

o/ij
þ og
oK

oK
o/ij

¼ og
oYmn

W
E
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� oHmn
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orij
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oYmn
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¼ eEij
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oYmn

MkplqJkplqmn ðA:4Þ
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oYij

� of
ormn

ormn
oYij

¼ of
ormn

oYij
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 ��1

ðA:5Þ

where

oYij
ormn

¼ MkplqJkplqijeEmn ðA:6Þ

og
oYij

� Yij � Hijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYkl � HklÞðYkl � HklÞ

p ðA:7Þ

of
orij

� 3

2

sij � X ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðskl � X klÞðskl � X klÞ

q ðA:8Þ
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